Target Support Package™ FM5 2
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Target Support Package™ FM5 User’s Guide
© COPYRIGHT 2002-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2002
July 2002
December 2002
June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 12.1+)
Revised for Version 1.0.1 (Release 13)
Revised for Version 1.1 (Release 13+)
Revised for Version 2.0 (Release 14)
Revised for Version 2.0.1 (Release 14SP1)
Revised for Version 2.0.2 (Release 14SP2)
Revised for Version 2.0.3 (Release 14SP3)
Revised for Version 2.0.4 (Release 2006a)
Revised for Version 2.0.5 (Release 2006b)
Revised for Version 2.1 (Release 2007a)
Revised for Version 2.2 (Release 2007b)
Revised for Version 2.2.1 (Release 2008a)

Getting Started

Product Overview0 iiuiiiiennn... 1-3
Introduction 1-3
Feature Summary, 1-3
Applications for the Target Support Package™ FM5

Product e 1-6

Additional Blocks on MATLAB Central Web Site 1-10

Prerequisites i 1-11

Using ThisGuide 1-12

Installation i .. 1-13

Hardware and Software Requirements 1-14
Operating System Requirements 1-14
Hardware Requirements, 1-14
Software Requirements, 1-15

Setting Up and Verifying Your Installation 1-17

Setting Target Preferences 1-18
Configuring the Target Support Package™ FM5 Product for

Your Cross-Development Toolchain 1-18

Run Test Program, 1-25
Download Boot Code to Flash Memory 1-25
Start Menu Options, 1-28

Data Type Support and Scaling for Device Driver
Blocks i e 1-30

vi

Contents

Generating Stand-Alone Real-Time Applications

2

OVeIVIEW . i e e e e e

Generating Real-Time Applications
Deploying Generated Code

Tutorial: Creating a New Application

Tutorial Overviewciiitiiiiennneennnn
Before YouBegin i i i
The Example Model
GeneratingCodeiiiiiiiiiiiiiiiiiee .,
Downloading the Application to RAM via Serial or CAN ..
Downloading the Application to RAM viaBDM

Downloading Boot and Application Code

RAM vs. Flash Memorycciiiiiiinnnnnn.
Overview of Memory Organization and the Boot Process ..
Downloading Application Code
Stand-Alone Download Control Panel Utility
Downloading Boot or Application Code via CAN Without
Manual CPUReset,
Rebuilding the Boot Code and Device Driver Libraries .
Running Applications with a Debugger

Parameter Tuning and Signal Logging

Methods for Parameter Tuning and Signal Logging
Using External Mode
Using a Third Party Calibration Tool
Data Acquisition (DAQ) List Configuration

HTML Code Profile (RAM/ROM) Report

Execution Profiling

Overview of Execution Profiling
The Profiling Command
Execution Profiling Definitions
MPC5xx Options for Execution Profiling
Interpreting the Execution Profiling Graphic
Enabling Execution Profiling for Device Driver Interrupt
Service Routines

2-3
2-3
2-4

Summary of the Real-Time Target 2-57

Code Generation Optionsccvviiuun.... 2-57
Requirements and Restrictions 2-59
Performance Tips i, 2-61
Run the Model Advisorccoiiiiineenn.. 2-61
Increase the System Clock Beyond the Default 20 MHz .. 2-61
Use Flash Instead of RAM , 2-61
TouCAN Interrupt Generator Block Performance Tips ... 2-62
Optimized Target Function Library 2-62

PIL Cosimulation

3

Overview of PIL Cosimulation 3-3
What Is PIL Cosimulation? 3-3
Why Use Cosimulation? 3-3
How Cosimulation Works 3-4

Tutorial 1: Building and Running a PIL

Cosimulation 3-6
Before YouBegin, 3-6
Hardware Connectionsc0eiiinnnnnnn. 3-6
The Demo Model 3-7
Setting Upthe Model 3-10
Building PIL and Simulation Components 3-12
Using the Demo Model In a PIL Cosimulation 3-15
Modifying the Controller Subsystem 3-18
Tutorial 2: Using the Demo Model in Simulation 3-19
Closed-Loop Simulation 3-19
SIL Simulation00, 3-19
PIL Target Summaryccciviiuiuneee... 3-20
Code Generation Optionsccvviiuuee.... 3-20
Build Process Files and Directories 3-22
Restrictions it 3-23
Algorithm Export Target 3-26

vii

viii

HTML Code Analysis (RAM/ROM) Report 3-28

Algorithm Export Target Summary 3-31
Code Generation Optionsccvviiuen.... 3-31
Restrictions 3-31

4

MPCS555 Driversc.utiiiiinnniieeennnnnnnns 4-2
Top-Level Blocks 4-2
CAN 2.0B Controller Module (TouCAN) 4-3
Enhanced Queued Analog-to-Digital Converter

Module-64 e 4-3
Execution Profiling 4-4
Interrupts ... o e 4-4
Modular Input/Output System (MIOS1) 4-4
Queued Analog-to-Digital Converter Module-64 4-5
Time Processor Unit (TPU3) 4-5
Serial Communications Interface (SCI) 4-6
Utilities ... i e e 4-6

CAN Message Blocks and CAN Drivers 4-7

Blocks — Alphabetical List

5

Configuration Parameters

6

Real-Time Workshop Pane: ET MPC5xx (Algorithm

Export) Options i, 6-2
ET MPCb5xx (Algorithm Export) Options Tab Overview . .. 6-2
Use prebuilt (static) RTW Libraries 6-4

Contents

Real-Time Workshop Pane: ET MPC5xx

(Processor-in-the-Loop) Options 6-5
ET MPC5xx (Processor-in-the-Loop) Options Tab

OVeIVIEW & ittt ettt ettt e 6-5
Optimize compilerfor 6-6
Compiler optimization switches 6-7
Buildaction 6-8
Use prebuilt (static) RTW Libraries 6-9

Real-Time Workshop Pane: ET MPC5xx Real-Time

Options (1)ttt ittt e iie e 6-10
ET MPCb5xx Real-Time Options (1) Tab Overview 6-10
Optimize compilerfor 6-11
Compiler optimization switches 6-12
Target Memory Model, 6-13
Buildaction 6-15
Use prebuilt RTW libraries 6-16

Real-Time Workshop Pane: ET MPC5xx Real-Time

Options (2) ...t it 6-17
ET MPCb5xx Real-Time Options (2) Tab Overview 6-17
Maximum number of concurrent base-rate overruns 6-17
Maximum number of concurrent sub-rate overruns 6-18
Execution profiling i, 6-20
Number of data points , 6-20

Toolchains and Hardware

Setting Up Your Toolchain A-3

Setting Up Your Installation with Wind River Compiler

and Wind River Systems SingleStep™ Debugger ... A-4
Required Hardware and Software A4
Procedure i A4

Setting Up Your Installation with Freescale™
CodeWarrior®ot A-9
Required Hardware and Software A-9

ix

Procedure e A-9

Setting Up Your Target Hardware A-13
Communications Ports A-13
Jumper Settings i e e A-14

CAN Hardware and Drivers A-20
Configuring CAN Channels A-20
Creating and Assigning Application Channels A-20

Configuration for Nondefault Hardware A-22
Hardware Clock Configuration A-22

Other Configuration Changes for Nondefault Hardware .. A-24

Integrating External Blocksets A-26
Introduction A-26
Example External Blockset Directory Structure and

rtwmakecfgm A-27
Examples

Real-Time Target, B-2

Processor-in-the-Loop Target B-2

Algorithm Export Target B-2

Index

Contents

Getting Started

This section contains the following topics:

Product Overview (p. 1-3)
Additional Blocks on MATLAB

Central Web Site (p. 1-10)
Prerequisites (p. 1-11)

Using This Guide (p. 1-12)

Installation (p. 1-13)

Hardware and Software
Requirements (p. 1-14)

Setting Up and Verifying Your
Installation (p. 1-17)

Setting Target Preferences (p. 1-18)

Overview of the product and its use
in the development process.

Additional resources such as
user-contributed blocks.

What you need to know before using
the Target Support Package™ FM5
product.

Suggested path through this
document to get you up and running
quickly with the Target Support
Package FM5 product.

Installation of the product.

Hardware platforms supported by
the product; required MathWorks
tools and development tools (e.g.,
compilers, debuggers) required for
use with the product.

Overview of setting up your
development tools and hardware

to work with the Target Support
Package FM5 product, and verifying
correct operation.

Configuring environmental settings
and preferences for use with specific
development tools.

1 Getting Started

Start Menu Options (p. 1-28)

Data Type Support and Scaling for
Device Driver Blocks (p. 1-30)

A quick guide to the functionality
available in the Start menu.

Input and output data types
supported by the device driver
blocks.

Product Overview

Product Overview

In this section...

“Introduction” on page 1-3

“Feature Summary” on page 1-3

“Applications for the Target Support Package™ FM5 Product” on page 1-6

Introduction

The Target Support Package™ FM5 product is an add-on product for use
with the Real-Time Workshop® Embedded Coder™ software. It provides a
complete and unified set of tools for developing embedded applications for the
Freescale™ MPC555 and MPC56x processors (MPC561, MPC562, MPC563,
MPC564, MPC565 and MPC566). The MPC5xx family of processors are
products of Freescale Semiconductor, Inc., formerly a division of Motorola, Inc.

Used in conjunction with the Simulink®, Stateflow®, and Real-Time Workshop
Embedded Coder products, Target Support Package FM5 software lets you
® Design and model your system and algorithms.

® Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the MPC5xx.

® Use cosimulation and rapid prototyping techniques to evaluate performance
and validate results obtained from generated code running on the target
hardware.

® Deploy production code on the target hardware.

Feature Summary

Production Code Generation

® The Real-Time Workshop Embedded Coder product generates production
code for use on the target MPC5xx microcontroller.

1-3

1 Getting Started

® The Real-Time Workshop Embedded Coder product generates project or
makefiles for popular cross-development systems:

= Wind River Systems Wind River Compiler
= Freescale CodeWarrior®

® Debugger support:
= Wind River Systems SingleStep™ debugger
= Freescale CodeWarrior debugger

e Support for ANSI C (ANSI X3.159-1989) math library for floating-point
functions.

Device Driver Support

¢ The Target Support Package FM5 Library provides device driver blocks
that let your applications access on-chip resources. The I/O blocks support
the following features of the MPC555 and MPC56x:

= Pulse width modulation (PWM) generation via the Modular Input/Output
Subsystem (MIOS) PWM unit or the Time Processor Unit 3 (TPU)
modules

= Analog input via the Queued Analog-to-Digital Converter (QADC64)
= Digital input and output via the MIOS or TPU
= Digital input via the QADC64

Frequency and pulse width measurement via the MIOS Double Action
Submodule (MDASM)

Transmit or receive Controller Area Network (CAN) messages via the
MPC5xx TouCAN modules

= Driver blocks to support other functions of the TPU modules — Fast
Quadrature Decode, New Input Capture/Input Transition Counter, and
Programmable Time Accumulator

Serial transmit and receive

= Utility blocks such as a watchdog timer

14

Product Overview

Code and Performance Analysis
Web-viewable code generation report includes

Analysis of RAM/ROM usage and other variables

Analysis of code generation options used, with optimization suggestions

Hyperlinks to all generated code files

Hyperlinks from generated code to source model in Simulink

Applications Development and Rapid Prototyping

Generation of real-time, stand-alone code for MPC5xx

Scheduler and time functions for singlerate or multirate real-time operation

CAN-based loader for download of generated code to RAM or flash memory

CAN-based host-target communications for non-real-time retrieval of data
on host computer

Simulation and Cosimulation

® Automatic S-function generation lets you validate your generated code in
software-in-the-loop (SIL) simulation.

® Processor-in-the-loop (PIL) cosimulation lets you integrate generated code,
running on the target processor, into your simulation.

e SIL and PIL code components are generated by the Real-Time Workshop
Embedded Coder product. These simulation components are in the same
compact and efficient format as the production code generated for final
deployment.

CAN Support

¢ Transmit or receive CAN messages via the MPC5xx TouCAN modules.

® CAN Drivers (Vector) library provides blocks for transmitting, receiving,
configuring, and connecting to Vector-Informatik CAN hardware and
drivers. These can be used in simulation to connect to a real CAN bus.

1 Getting Started

® The CAN Message Blocks library includes blocks for transmitting,
receiving, decoding, and formatting CAN messages. It also supports
message specification via the Vector-Informatik CANdb standard. CAN is
an industry standard protocol used in automotive electronics and many
other embedded environments where dispersed components require
sharing of information.

Code Validation and Performance Analysis

Code Validation. Since signal data is available to Simulink during each
sample interval in a PIL simulation, you can observe signal data on Scope
blocks or other Simulink signal viewing blocks. You can also store signal
data to MAT-files via To File blocks. To validate the results obtained by the
generated code running on the target processor, you can compare these files to
results obtained using a normal Simulink plant/controller simulation.

Determining Code Size. In control design it is critical to ensure that the
size of the generated code does not exceed physical limitations of RAM and
ROM. The Target Support Package FM5 product can automatically produce
a code generation report that displays the RAM usage and ROM size of the
generated code.

This capability is useful when selecting which code generation optimizations
will be used. After determining the size of the required RAM and ROM,
you can consider which code generation optimizations to use, and consider
modifications to the modeling style.

Applications for the Target Support Package™ FM5
Product

The Target Support Package FM5 product provides targets that support three
application scenarios:

® Real-time (RT) execution for production and rapid prototyping

® Processor-in-the-loop (PIL) cosimulation target

® Algorithm export (AE) target

Product Overview

In the sections that follow, we summarize typical applications and the tasks
you will need to perform for each; we also provide links to the relevant
documentation.

Real-Time Execution and Rapid Prototyping

The Target Support Package FM5 real-time target enables you to use your
controller block diagram in real time to perform embedded control. With this
target, you can add I/O blocks for the MPC5xx to your controller subsystem,
generate and build code, download to the target, and run the generated C code.

When you first begin using the RT target, see “Tutorial: Creating a New
Application” on page 2-5, which demonstrates the following topics through the
use of a simple model with a device driver:
¢ Examining the demo model with a plant model and controller
¢ Adding the MPC555 Resource Configuration block to your subsystem
¢ Adding I/O device drivers from the Target Support Package FM5 library
¢ Selecting the RT target
¢ Generating code for real time
¢ Downloading code with
= A BDM connector
= CAN
¢ Running the generated code in real-time
You may also be interested in generating code analysis information from

your RT target build. See “HTML Code Analysis (RAM/ROM) Report” on
page 3-28 for details.

Processor-in-the-Loop

The processor-in-the-loop (PIL) target lets you run a cosimulation of a
closed-loop Simulink model for the purpose of code validation and analysis.
When running a PIL cosimulation, you use a closed-loop model with two
major components: a plant model and a controller. The plant model may

1 Getting Started

contain any Simulink blocks including a combination of continuous-time and
discrete-time blocks.

To get started with the PIL target, see “Tutorial 1: Building and Running a
PIL Cosimulation” on page 3-6. The tutorial covers the following topics:

® Opening the demo model and examining the plant model and controller
® Selecting the PIL target

® Generating the Embedded Real-Time (ERT) S-function and the
corresponding library block

¢ Inserting the S-function back into the closed-loop model
® Automatic downloading of generated code with

= Wind River Systems SingleStep debugger and a Background Debug
Mode (BDM) port connector

= CodeWarrior and a BDM connector

¢ Running a PIL cosimulation

You may also be interested in generating code analysis information from
your PIL target build. See “HTML Code Analysis (RAM/ROM) Report” on
page 3-28 for details.

Algorithm Export

The Target Support Package FM5 algorithm export (AE) target enables

you to generate code for your controller subsystem and build the code as a
stand-alone executable for use on the MPC5xx. The difference between the AE
and the PIL target is that the AE target eliminates all extraneous code (such
as serial communications code) used for cosimulation, and also eliminates any
real-time interrupts. The AE target therefore generates code only for the basic
controller subsystem (e.g. algorithm code). You can then modify or customize
this code for your own special purposes.

In contrast, the RT target provides turnkey code including interrupt service
routines, driver code, and underlying initialization code for the MPC5xx.
Depending upon your particular application, you may find it more valuable
to begin with the AE target baseline, and extend this environment for your
own use.

Product Overview

The AE target is documented in “Algorithm Export Target” on page 3-26.
Like the PIL and RT targets, the AE target supports generation of code

analysis information. See “HTML Code Analysis (RAM/ROM) Report” on
page 3-28 for details.

1-9

1 Getting Started

Additional Blocks on MATLAB Central Web Site

Check the MATLAB Central Web site for user- and developer-contributed
blocks and demos, such as the MPC555 Motor Control Function Blockset
for Release 2006a.

The MPC555 Motor Control Function Blockset is an extensive collection of
additional TPU I/O blocks for the Target Support Package™ FM5 product.
This functionality is particularly useful in the context of motor and powertrain
control, including functions for missing and additional tooth detection.

1-10

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10439&objectType;=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10439&objectType;=file

Prerequisites

Prerequisites

This document assumes you are experienced with the MATLAB®, Simulink®,
Stateflow®, Real-Time Workshop®, and Real-Time Workshop® Embedded
Coder™ products.

Minimally, you should read the “Getting Started” section of the Real-Time
Workshop documentation to understand general concepts and terminology
related to Real-Time Workshop software, and try some of the demos of the
user interface, code generation and build process, and other essential features.

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation.

In addition, if you want to understand and use the device driver blocks in
the Target Support Package™ FMS5 library, you should have at least a basic
understanding of the architecture of the MPC5xx processor you are using.
The Freescale™ MPC555 Users Guide (or MPC561-564, or MPC565-566,

as appropriate) is required reading. We recommend that you read the
introduction to the processor and familiarize yourself with all the major
subsystems of the MPC5xx. You can find this document at the following URL:
http://www.freescale.com/.

1-11

http://www.freescale.com/

1 Getting Started

1-12

Using This Guide

We suggest the following path to get acquainted with the Target Support
Package™ FMS5 product and gain hands-on experience with the features most
relevant to your interests:

Read Chapter 1, “Getting Started” in its entirety, paying particular
attention to “Setting Up and Verifying Your Installation” on page 1-17.

If you are interested in using the supplied device driver blocks and in
deploying stand-alone, real-time applications on the MPC5xx, read Chapter
2, “Generating Stand-Alone Real-Time Applications” Work through the
“Tutorial: Creating a New Application” on page 2-5.

If you are interested in processor-in-the-loop (PIL) cosimulation, read
Chapter 3, “PIL Cosimulation” to learn about the Target Support Package
FMS5 PIL target. Work through the “Tutorial 1: Building and Running

a PIL Cosimulation” on page 3-6.

Then, for in-depth information about the Target Support Package FM5
device drivers and other blocks, see Chapter 4, “Block Reference” It is
particularly important to read MPC555 Resource Configuration, as the
MPC555 Resource Configuration block is required to use most of the device
driver blocks.

See also the Target Support Package FM5 Demos. To browse the demos,
open the MPC555 Help and Demos library. You can then double click the
Help for Demos block to go directly to information and instructions for all
demos, or select Start > Links and Targets > Target Support Package
FMS5 > Demos. These demos are used in the tutorials, where there are
detailed explanations.

Installation

Installation

Your platform-specific MATLAB® Installation guide provides all of the
information you need to install the Target Support Package™ FMS5 product.

Prior to installing, you must obtain a License File or Personal License
Password from The MathWorks. The License File or Personal License

Password identifies the products you are permitted to install and use.

As the installation process proceeds, it displays a dialog where you can select
which products to install.

1-13

1 Getting Started

Hardware and Software Requirements

In this section...

“Operating System Requirements” on page 1-14

“Hardware Requirements” on page 1-14

“Software Requirements” on page 1-15

Operating System Requirements

The Target Support Package™ FM5 product is a PC Microsoft®Windows® only
product. The product has been tested on MicrosoftWindows XP.

You can see the MATLAB® system requirements online at

http://www.mathworks.com/support/sysreq/current_release/index.html

Hardware Requirements

Programs generated by the Target Support Package FM5 product can run on
any Electronic Control Unit (ECU) that is based on the MPC555 or MPC56x
(561-6) processor.

In this document, we specify settings and procedures for use with the Phytec
phyCORE-MPC555 board, the Phytec MPC565, the Axiom MPC555, and the
Axiom MPC564, in conjunction with specific cross-development environments,
see “Setting Up Your Target Hardware” on page A-13 for details.

If you use a different development board, you may need to adapt these
settings and procedures for your development board.

If you want to use CAN to transmit or receive CAN messages between your
host PC and your target, you require Vector-Informatik CAN hardware
supported by the Vector CAN Driver Library. See “CAN Hardware and
Drivers” on page A-20.

1-14

http://www.phytec.com/products/rdk/PowerPC/phyCORE-MPC555.html
http://www.phytec.com/products/rdk/PowerPC/phyCORE-MPC565.html
http://www.vector-informatik.com/vi_can_hardware_en%2C%2C223.html
http://www.vector-worldwide.com/downloads/drivers/canlib43.zip

Hardware and Software Requirements

Software Requirements

Required and Related MathWorks™ Products

The Target Support Package FM5 product requires these products from The
MathWorks™:

MATLAB

Simulink®

Real-Time Workshop®

Real-Time Workshop® Embedded Coder™

= Optional for Real-Time Target
= Required for Processor-in-the-Loop and Algorithm Export Targets.
= Required for CCP Data Acquisition (DAQ) List mode of operation.

For more information about any of these products, see either

¢ The online documentation for that product, if it is installed

¢ The MathWorks Web site, at http://www.mathworks.com; see the Products
section

The MathWorks provides several products that are especially relevant
to the kinds of tasks you can perform with the Target Support
Package FM5 product. For required and related products, see:
http://www.mathworks.com/products/target_mpc555/

1-15

http://www.mathworks.com
http://www.mathworks.com/products/target_mpc555/

1 Getting Started

Supported Cross-Development Tools

In addition to the required MathWorks software, a supported
cross-development environment is required. The Target Support Package
FMS5 product currently supports the cross-development tools listed below;
please read carefully the limitations noted:

¢ Freescale™ CodeWarrior® Development Studio, MPC5xx Edition, v8.7

(debug via Macraigor Systems Wiggler, Raven/ Blackbird, or On-board
BDM).

¢ Wind River Systems Wind River Compiler version 5.4.0, (formerly known
as Diab), and Wind River Systems SingleStep™ debugger of the following
versions:

= Wind River Systems SingleStep with vision Version 7.7.5 (debug via
Wind River visionPROBE) (for MPC5xx)

Wind River Systems SingleStep Version 7.6.6 (debug via Macraigor
Systems Wiggler, Raven / Blackbird, On-board BDM) (for MPC555 only)
(+ Fromelf patch from Wind River Support)

You must download fromelf.exe for the Wind River Systems SingleStep
debugger 7.6.6, otherwise builds with debug flag -g set will not load,
with the following error: "aborting due to failure of ELF reader".

Note to use these BDM devices you must set up nondefault target
preferences, as detailed in “Setting Up and Verifying Your Installation”
on page 1-17.
The full feature set (PIL, RT, and AE targets) is supported for both toolchains.
Before using the Target Support Package FM5 product with any of the above
cross-development tools, please be sure to read and follow the instructions in

“Setting Up and Verifying Your Installation” on page 1-17.

See also this solution forInformation about the availablity of SingleStep.

1-16

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=CWS-MPC-5XX-CX
http://www.macraigor.com/wiggler.htm
http://www.macraigor.com/raven.htm
http://www.windriver.com/portal/server.pt?space=Opener&control;=OpenObject&cached;=true&in_hi_ClassID;=512&in_hi_OpenerMode;=2&in_hi_ObjectID;=731&
http://www.windriver.com/portal/server.pt?space=Opener&control;=OpenObject&cached;=true&in_hi_ClassID;=512&in_hi_OpenerMode;=2&in_hi_ObjectID;=724&
http://www.windriver.com/portal/server.pt?space=Opener&control;=OpenObject&cached;=true&in_hi_ClassID;=512&in_hi_OpenerMode;=2&in_hi_ObjectID;=799&
http://www.macraigor.com/wiggler.htm
http://www.macraigor.com/raven.htm
http://www.mathworks.co.uk/support/solutions/data/1-3ZL6JP.html?product=TM&solution;=1-3ZL6JP

Setting Up and Verifying Your Installation

Setting Up and Verifying Your Installation

The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the Target Support Package™ FM5
product and verify correct operation. The initial configuration steps are
described in the following sections:

® You must set up your development environment and your target hardware.
Information on these settings can be found in the Appendix A, “Toolchains
and Hardware”:

= “Setting Up Your Target Hardware” on page A-13
= “Setting Up Your Toolchain” on page A-3

Note You MUST check your jumper settings. Incorrect operation or
even hardware damage may occur if you do not. See “Jumper Settings”
on page A-14.

® You must configure the Target Support Package FM5 product to work with
your toolchain by specifying the locations of your compiler and debugger.
This is described in the section “Setting Target Preferences” on page 1-18.

o We supply a test program to verify your installation. This confirms you
have correctly set up your toolchain, target preferences and development
board. See “Run Test Program” on page 1-25.

® The next step is to download boot code to the flash memory of your MPC5xx.
See “Download Boot Code to Flash Memory” on page 1-25.

Note You must download the new boot code if you have used a previous
release of the Target Support Package FM5 product with your hardware.
See “Download Boot Code to Flash Memory” on page 1-25.

Once you have completed these steps we suggest you run the tutorials in
subsequent sections to get started.

1-17

1 Getting Started

Setting Target Preferences

1-18

In this section...

“Configuring the Target Support Package™ FM5 Product for Your
Cross-Development Toolchain” on page 1-18

“Run Test Program” on page 1-25
“Download Boot Code to Flash Memory” on page 1-25

Configuring the Target Support Package™ FM5
Product for Your Cross-Development Toolchain

This section describes how to set target preferences associated with the Target
Support Package™ FM5 product. These settings persist across MATLAB®
sessions and different models. Target preferences let you specify the location
of your MPC5xx cross-compiler, the communications port to be used for
downloading code, and other parameters affecting the generation, building,
and downloading of code.

You must make sure you localize the Target Support Package FM5 settings to
suit your PC and cross-development toolchain. It is important that you set
the correct path to your compiler and debugger using the Target Support
Package FM5 Target Preferences dialog box.

Instructions for setting up specific third-party toolchains for use with the
Target Support Package FM5 product are in Appendix A, “Toolchains and
Hardware”. Make sure you have followed the instructions to set up your

toolchain first:

e “Setting Up Your Installation with Wind River Compiler and Wind River
Systems SingleStep™ Debugger” on page A-4

= “Setting Target Preferences for Wind River Compiler and Wind River
Systems SingleStep™” on page A-5. Note especially the settings you
must change if you are not using the visionPROBE BDM device. The
defaults are set up for the visionPROBE.

¢ “Setting Up Your Installation with Freescale™ CodeWarrior®” on page A-9

= “Set Target Preferences for CodeWarrior®” on page A-11

Setting Target Preferences

You can modify target preference objects via the Target Support Package
FMS5 Target Preferences dialog box:

1 Select Start > Links and Targets > Target Support Package FM5 >
Target Preferences.

This opens the Target Support Package FM5 Target Preferences
dialog box where you can edit the settings for your cross-development
environment. When you first open the dialog the following settings are
visible.

Target Support Package FM5 Target Preferencei‘-f‘ =101l
SerialCommunications mpcs35, CommPort
TargetBoard mpcSS5, TargetBoard

ToolChain Diab =
ToolChainOptions mpcS55. DiabOptions

i Feset bo Defaudlt [0 4 | Cancel | Help |

2 Select Diab or CodeWarrior from the drop-down Toolchain menu.

1-19

1 Getting Started

1-20

Note the Wind River Compiler was formerly known as Diab. Any
appearances of the term Diabd in the documentation and / or product should
be understood to refer to the Wind River Compiler.

3 Expand ToolChainOptions as shown below (by clicking the plus sign) and
type the correct path into CompilerPath. The following shows Wind River
Compiler options. Note that the defaults are set up for the visionPROBE
— see the Appendix for settings to use another BDM device, described
in “Setting Target Preferences for Wind River Compiler and Wind River
Systems SingleStep™” on page A-5.

FA Target Support Package FM5 Target Preferen't's:'f =101x]
SerialCommunications mpcS55, CommPort
TargetBoard mpcSS5, TargetBoard

ToolChain Diab =

&l ToolChainOptions mpcS55. DiabOptions

CompilerOptimizationZwitches mpcs55, CompileroptimizationSwitches
CompilerPath o' applications' windRiver &
DebuggerExecutable Visppc.exe &
DebuggerPath d:\applications\sds773 &
Debuggerswitches -q -t - -p visionPROBE:LPT1 &

i Feset bo Defaudlt 04 | Cancel | Help |

Note The drive designated in the compiler and debugger paths must be
either an actual hard drive on your PC, or a mapped drive. Do not use a
Universal Naming Convention (UNC).

4 For Wind River Systems SingleStep™ you must also type the correct
path into Debugger Path. This is not necessary for CodeWarrior® as
the compiler and debugger are integrated. The example below shows the
CodeWarrior preferences.

Setting Target Preferences

SerialCommunications
TargetBoard
ToolChain

CompilerOptimizationZwitches

CompilerPath

I Target Support Package FM5 Target Preferences

=10 %]
mpcS55, CommPort
mpcs55, TargetBoard
Codewarrior -

mpcS55, CodeWarriorOptions
mpcs55, CompileroptimizationSwitches
d:\applications\Codett arrior &

Reset to Default | oK

| Cancel | Help |

There are other settings in the target preferences you can see by expanding

all the options, as shown.

EitRate
HostPark:

TargetPoark
TirneCuk
[=] TargetBoard
OscillakarFrequency
Processoryariant
TonlChain
[=] ToolChainOptions
= CompileroptimizationSwitches
Debug
Size
Speed
CompilerPath

I Target Support Package FM5 Target Preferences

=10 |
mpc555, CommPork
S7E00 &
coml -
coml -
4 &

mpcs55, TargetBoard

20

555

Codewwarrior

mpcS55, CodetWarriorOptions

mpcs55, CompileroptimizationSwitches
-gdwarfz

-opk space

-opt speed
d:\applications\Codewarrior

B 0% %%

Reset ko Defaulk o4

Cancel | Help |

1-21

1 Getting Started

1-22

Serial Communications

These target preferences relate to Processor-in-the-Loop (PIL) cosimulation
only.

[=-SerialCarmmunications mpcSS5. CommPort

 BitRate 57600 P
----- HostPart: coml v
> ----- TargetPark coml -
- Timeout 4 &

e BitRate — Bit rate (in bps) for host/target communications. The default
is 57600.

® HostPort — Host serial port for host/target communications. Select from
com1 to com8; the default is com1.

e TargetPort — Target board serial port for host/target communications.
Select from com1 to com8; the default is com1.

e TimeOut — Time-out value (in seconds) for the serial communications port.
The default is 4.

Target Board

"'Taf';letBnard mpcSss. TargetBoard
----- DecillakorFrequency 0 .
i Processarvariankt 555 o

® OscillatorFrequency — Choose either 20 MHz (the default) or 4 MHz if
you are using a 4MHz board.

® ProcessorVariant — Here you can select from 555, 561, 562, 563, 564, 565
or 566 to match your target processor. The default is the MPC555.

When you install bootcode after setting target preferences the correct bootcode
for your chosen target processor and oscillator frequency will be automatically
installed. Note that you also need to make these settings match in your
models for the non-default target processor and oscillator frequency. See
“Configuration for Nondefault Hardware” on page A-22.

Setting Target Preferences

Compiler Optimization Switches

éTl:ll:llli:h El}

ToolZhainOptions

= CompilerOptimizationSwitches
Debug
Size
Speed

CompilerPath
DebuggerExecutable
DebuggerPath
Debuggerswitches

;TD ol Chain

ToolChainOptions
= CompilerptimizationSwitches
Debug
Size
Speed
CorpilerPath

Diab

mpcS55. DiabOptions

mpc5SS. CompilerOptimizationSwitches
-9

-n0) -¥size-opk

-m

di\applications\windRiver

visppC,exe

d:\applications\sds773

-g - - -p wisionPROBE:LPT1
Codewarrior

mpcSSS, CodetarriorOptions

mpcS55, Compiler OptimizationSwitches
-gdwarf2

-opk space

-opt speed
driapplicationsCodetwarrior

For both toolchains these settings configure optimizations for speed, size,
and debug. The settings are compiler specific. These properties can be edited
from the Target Support Package FM5 Target Preferences dialog box
or from the Configuration Parameters dialog box, described below. The
defaults should be adequate for most rapid prototyping purposes.

If you want to alter these settings, consult your compiler documentation for
specific optimizations. To edit the settings,

® If you want your changes to apply to many models, edit them within the
Target Support Package FM5 Target Preferences dialog box. Your
settings will appear within the Configuration Parameters dialog box
in the Compiler optimization switches field when you select speed,
size or debug from the Optimize compiler for options in the drop-down
menu. You must choose ET MPC5xx real-time options (1) from the
Real-Time Workshop tree to reach these settings, as shown in the

following example.

1-23

1 Getting Started

8, Configuration Parameters: mpc555tt_led/Configuration (Active)

Select: s .
Gl Optimize compiler forlspeed

- Data Import/Esport Compiler optimization switches W
- [plimization
= Diagrnostics Target mernory modell Rk

i~ Sample Time
[rata Y alidity
Type Conversion v Use prebuilt RTW libraries
Connectivity
Compatibility
Model Referencing

Buaild actionl MHone

-~ Hardware |mplementation

- Model Feferencing

= Real-Time Warkshop

- Heport

- Comments

- Spmbolz

- Cugtom Code

- Dlebug

- | nterface

- Code Style

- Templates

- D1ata Flacement

-~ Dlata Type Replacement
- blemnory Sections

S T MFPCh al-time opti]
- ET MPChuw real-time options (2]

* If you want to customize these settings for a single model, edit them from
the Configuration Parameters dialog box. Optimize compiler for will
change to custom and the defaults for these settings will remain unchanged
in the Target Support Package FM5 Target Preferences dialog box.
When you edit these settings, you must place single quotation marks at
either end of the string. These settings are then applied to model code.

Use Prebuilt RTW Libraries. This check box option (selected by default)
determines whether prebuilt RTW libraries, compiled with default compiler
switches, are linked against during compilation of the generated code. When
this option is not selected, the source modules that comprise these libraries
will be compiled individually in the model build directory, using the currently
selected compiler switches. Using prebuilt RTW libraries saves a considerable
amount of time during the build process

1-24

Setting Target Preferences

Debugger Switches

This setting is specific to Wind River Systems SingleStep. See “Setting Target
Preferences for Wind River Compiler and Wind River Systems SingleStep™”
on page A-5.

Run Test Program

To verify your setup, you can download and run a simple test program on
the phyCORE-MPC555 board:

1 Select Start > Links and Targets > Target Support Package
FMS5 > Run Simple MPC555 Test Application.

2 To answer the question Do you want to run the application? Typey
at the command line.

If you have not set up your target preferences properly the process will stop
and ask you to do this now.

Watch as your toolchain downloads and runs the application on your
phyCORE board. Successful execution results in a blinking LED.

You have now verified your installation and are ready to begin working with
the Target Support Package FM5 product.

Download Boot Code to Flash Memory

The next step is to download the boot code to flash memory, if you have not
already done so. Normally, you will only need to program the boot code into
flash memory once. After this is done, new application code can be downloaded
as often as required without any changes to the boot code.

The first time you program the boot code into the target hardware, you must
download it via the BDM port. However, if existing boot code is already
programmed into flash memory and must be replaced (for example, with a
newer or modified version) it is also possible to download entirely over CAN
or serial. If you are upgrading from a previous release of the Target Support
Package FM5 product you must download the new boot code.

1-25

1 Getting Started

1-26

If your target does not have bootcode already you can only install new
bootcode with a BDM. See the next section “Installing Bootcode via BDM and
Serial or CAN” on page 1-26. For existing bootcode, you can use a BDM or
CAN; with bootcode from version 1.2 or later you can also download over
Serial. See “Installing Bootcode Without a BDM” on page 1-27.

The first time you use the Target Support Package FM5 product you must use
a toolchain to download boot code to the MPC555 flash memory. Once the boot
code is loaded into flash memory, you can download code to the processor
entirely over serial or the CAN network as described in the tutorials. See
“Overview of Memory Organization and the Boot Process” on page 2-20 for
more information.

Installing Bootcode via BDM and Serial or CAN

To install bootcode, follow these steps:

1 Connect the BDM cable to the target, and a serial or CAN cable. If you
do not have a BDM available, see “Installing Bootcode Without a BDM”
on page 1-27.

2 Select Start > Links and Targets > Target Support Package
FMS5 > Install MPC5xx Bootcode.

A dialog appears asking if you are connected to the target via BDM. Read
the information on the dialog.

3 Click Yes.
Your toolchain is launched and prepares to download.
The Download Control Panel appears.

4 If you are using CAN (the default) you can proceed to step 5. If you
are using serial to connect to the target, click the Communications
Options tab in the Download Control Panel and select Serial from the
Connection type drop-down menu.

5 On the Download tab, click Start Download.

Setting Target Preferences

Your development tools execute a command to install the boot code. When
the process stops, the messages in the Download Control Panel complete,
and the Stop Download button reverts to Start Download. The boot code
should now be installed.

Installing Bootcode Without a BDM

If your target does not have bootcode already you can only install new
bootcode with a BDM. For targets with existing bootcode, if you do not have a
BDM available you can install bootcode as follows:

¢ For a target with R14 bootcode, you can install new bootcode using the
Start menu exactly as described above except step 4 - click No when asked
if you are connected via BDM. The download should complete successfully
over serial or CAN.

¢ If existing bootcode on the target is version 1.1 (R13+SP1), you can install
bootcode without a BDM if you have CAN. Use the Start menu bootcode
installer as described above and click No when asked if connected by BDM.
The download should complete successfully over CAN.

Note If the existing bootcode is earlier than version 1.1 (if it is R12.1 or R13),
you need to upgrade bootcode with a BDM. If no BDM is available, please
contact The MathWorks™ for a solution.

Once you have successfully downloaded boot code to your target, you have
completed your installation and are ready to use all the features of the target
support package. If necessary, please consult your toolchain documentation.

We suggest you now turn to Chapter 2, “Generating Stand-Alone Real-Time
Applications” to get hands-on experience with using the Target Support
Package FM5 product and your toolchain to generate, download, and execute
application code on your phyCORE-MPC555 board. You can then also

work through the tutorials in Chapter 3, “PIL Cosimulation” to start using
processor-in-the-loop simulation for development via the Target Support
Package FM5 product.

1-27

1 Getting Started

1-28

Start Menu Options

You can use the Start menu for the following options:

MPC5xx Driver Library — Opens the MPC5xx Drivers block library.
See “MPC555 Drivers” on page 4-2.

CAN Message Blocks — Opens the CAN Message Blocks library. See
“CAN Message Blocks and CAN Drivers” on page 4-7.

CAN Drivers (Vector) Library — Opens the CAN Drivers (Vector) block
library. See “CAN Message Blocks and CAN Drivers” on page 4-7.

Target Preferences — Opens the Target Preferences dialog. See “Setting
Target Preferences” on page 1-18.

Run Simple MPC5xx Test Application (via BDM) — Downloads and
runs a simple test application to blink an LED with your hardware. See
“Run Test Program” on page 1-25.

Install MPC5xx Bootcode — Installs the appropriate boot code on your
target processor. See “Download Boot Code to Flash Memory” on page 1-25.

Inspect the MPC5xx Hardware (via BDM) — Opens your debugger so
you can inspect the hardware.

Debug RAM Based Application (via BDM) — Downloads and then
allows you to debug a RAM application in .elf format.

Debug FLASH Based Application Already in FLASH (via BDM) —
Allows you to debug an application (in .elf format) already in FLASH.

Download RAM / FLLASH Based Application (via CAN / Serial) —
Launches the Download Control Panel, for downloading applications in
.s19 format to your hardware. See “Tutorial: Creating a New Application”
on page 2-5, and “Downloading Application Code” on page 2-22.

Start Menu Options

Download FLASH Based Application (via BDM and CAN / Serial)
— Allows you to use a BDM and the Download Control Panel to download
an application in .s19 format to FLASH memory. See “Downloading
Application Code” on page 2-22.

Initialize visionPROBE for Selected Target Board (WindRiver

Only) — If you are using a visionPROBE, you must run this option to
initialize the device, after setting target preferences (and again if you

change target processor). See “Initialize visionPROBE” on page A-7.

Rebuild the MPC5xx Driver Library — Recompiles the MPC5xx Driver
libraries. See “Boot Code Parameters for CAN Download” on page 2-29.

Environment Setup Help — Opens the Help Browser displaying the
documentation for setting up and verifying your installation.

Help — Opens the Help Browser and displays the product documentation.
Demos — Opens the product demos help with links to open the demos.

Product Page (Web) — Opens the product page on The MathWorks web
site.

1-29

1 Getting Started

Data Type Support and Scaling for Device Driver Blocks

The following table summarizes the input and output data types supported by
the device driver blocks in the Target Support Package™ FM5 library and the
scaling applied to block inputs and outputs.

1/0O Data Types and Scaling for MPC5xx Device Driver Blocks

Output
Input Data Input Output Data Scaling/

Block Type Scaling Type Units
MIOS Digital In Boolean 0 or 1 only
MIOS Digital Any Simulink® logic 1 if
Out supported data type input > 0,

logic 0 if

input <=0
MIOS Any Simulink logic 1 if
Digital Out supported data type input > 0,
(MPWMSM) logic 0 if

input <=0
MIOS Pulse double or single Oto1l
Width
Modulation Out
MIOS double or single Seconds
Waveform
Measurement
QADC Analog uint16 or int16 (defined by
In (defined by Justification

Justification parameter)
parameter)

QADC Digital Boolean 0 or 1 only
In
TouCAN CAN_MESSAGE_STANDARD| N/A
Receive or

CAN_MESSAGE_EXTENDED

1-30

Data Type Support and Scaling for Device Driver Blocks

1/0O Data Types and Scaling for MPC5xx Device Driver Blocks (Continued)

Output
Input Data Input Output Data Scaling/
Block Type Scaling Type Units
TouCAN CAN_MESSAGE_STANDARD | N/A
Transmit or
CAN_MESSAGE_EXTENDED

TouCAN Boolean N/A
Warnings
TouCAN Error uint8 N/A
Count
TouCAN Fault uint16 N/A
Confinement
State
TPU3 Digital In Boolean 0 or 1 only
TPU3 Digital Any Simulink Logic 1 if
Out supported data type input > 0,

logic 0 if

input <=0
TPU3 Fast Fast Mode input uint1é N/A
Quadrature Boolean
Decode
TPU3 uinti6é N/A
New Input
Capture/Input
Transition
Counter
TPU3 Time Accumulation N/A
%"r(;irammable 4int32
Accumulator Period Count

uint8

1-31

1 Getting Started

1-32

1/0O Data Types and Scaling for MPC5xx Device Driver Blocks (Continued)

Output
Input Data Input Output Data Scaling/
Block Type Scaling Type Units
TPUS3 Pulse Duty cycle input (top Oto1l
Width if 2 inputs): double or
Modulation Out | single
Pulse period register Saturated
input — uint16 to be in the
range 0 to
32768
Serial Transmit | Data: uint8 (vector or | N/A Number of bytes: 0-16 (for
scalar) uint32 SCI1); 0 or
Number of bytes: b (it S0 2)
uint32 (scalar)
Serial Receive Number of bytes: N/A Data: uint8 N/A
uints2 Oorl Actual number of N/A
Reset: Boolean bytes: uint32
Framing and parity 0or1
error: Boolean
Oor1l

Overrun flag: Boolean

Configuration Class Blocks

Each sublibrary of the Target Support Package FMS5 library contains a
configuration class block that has an icon similar to the one shown in this

figure.

DONOT
COPY

MP LSS5
Configuration
Clazz

Data Type Support and Scaling for Device Driver Blocks

Configuration class blocks exist only to provide information to other blocks.
Do not copy these objects into a model.. If you do you see an error dialog box to
warn you. This causes build failures.

1-33

1 Getting Started

1-34

Generating Stand-Alone
Real-Time Applications

This section includes the following topics:

Overview (p. 2-3) An overview of the Target Support
Package™ FM5 real-time target,
other components required to
generate stand-alone real-time
applications, and the process of
deploying generated code on target
hardware.

Tutorial: Creating a New Application A hands-on exercise in building

(p. 2-5) an application from a demo model,
including downloading and executing
generated code on a target board.

Downloading Boot and Application A detailed discussion of the process

Code (p. 2-18) of downloading code to the MPC555
RAM and flash memory.

Parameter Tuning and Signal How use Simulink® external mode

Logging (p. 2-32) or a third party calibration tool for

signal logging and parameter tuning.

HTML Code Profile (RAM/ROM) This section introduces the extended
Report (p. 2-46) HTML code generation report.

2 Generating Stand-Alone Real-Time Applications

Execution Profiling (p. 2-47)

Summary of the Real-Time Target
(p. 2-57)

Performance Tips (p. 2-61)

How to use the execution profiling
utilities to generate reports and
graphical displays for analyzing
timer-based tasks and asynchronous
Interrupt Service Routines (ISRs).

Summary of the code generation
options specific to the real-time
target, and requirements and
restrictions that apply to the current
release.

Suggestions for achieving higher
performance, for instance by using
the Model Advisor, and increasing
System Clock speed.

Overview

Overview

In this section...

“Generating Real-Time Applications” on page 2-3

“Deploying Generated Code” on page 2-4

Generating Real-Time Applications

This section describes how to generate a stand-alone real-time application for
the MPC555. The components required to generate stand-alone code are

¢ The Target Support Package™ FM5 real-time target features

The MPC555 Resource Configuration object provided in the Target Support
Package FM5 library

I/O driver blocks provided in the Target Support Package FMS5 library

Utilities for downloading generated code to the target hardware

Using these together with your toolchain, you can build a complete
application. You do not need to hand-write any C code to integrate the
generated code into a final application.

See “Before You Begin” on page 2-6 for information on supported hardware
and toolchains.

The tutorial “Tutorial: Creating a New Application” on page 2-5 uses

two blocks from the Target Support Package FM5 library. For complete
information on the Target Support Package FMS5 library blocks, see Chapter
4, “Block Reference”.

Before reading this section and using the Target Support Package FM5
library, you should have at least a basic understanding of the architecture of
the MPC555. To learn about the MPC555, we suggest that you study the
MPC555 Users Manual. We recommend that you read the introduction to
the processor and familiarize yourself with all the major subsystems of the
MPC555. You can find this document at the following URL:

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

2 Generating Stand-Alone Real-Time Applications

24

Deploying Generated Code

You can load a generated program into the MPC555 flash memory for
permanent deployment. You can also load your code into external RAM (if
available on your development hardware).

Alternatively, you can use the automatic code generation process for rapid
prototyping and investigate a range of different design alternatives before
making a deployment decision.

Your generated program can run on any Electronic Control Unit (ECU) that is
based on the MPC5xx processor. Your application can use any of the supported
MPC5xx on-chip I/O devices. We provide driver blocks for the MPC5xx’s
MIOS, TPU, QADC and TouCAN modules, providing you with drivers for the
on-chip analog input, digital I/O, PWM, serial and CAN devices.

See Chapter 4, “Block Reference” for further information on the device driver
blocks in the Target Support Package FMS5 library.

In addition to on-chip I/O resources, an ECU typically provides additional I/O
devices. If you want to access such custom I/O devices, you must write device
drivers and integrate them with the automatically generated code. See the
following documentation for details:

e Real-Time Workshop® User’s Guide
® Real-Time Workshop® Embedded Coder™ User’s Guide
o Writing S-Functions

Once the application has been programmed into memory on the target system,
you may need to monitor signals or tune parameters. The Target Support
Package FM5 product supports signal monitoring and parameter tuning via
Simulink® external mode or a third party calibration tool. In both cases you
must include a CAN Calibration Protocol (CCP) block in your model. The CAN
Calibration Protocol block implementation of CCP has been tested against
CANape from Vector-Informatik and ATI Vision. See “Parameter Tuning and
Signal Logging” on page 2-32 and CAN Calibration Protocol (MPC555) for
further information.

Tutorial: Creating a New Application

Tutorial: Creating a New Application

In this section...

“Tutorial Overview” on page 2-5

“Before You Begin” on page 2-6

“The Example Model” on page 2-7

“Generating Code” on page 2-10

“Downloading the Application to RAM via Serial or CAN” on page 2-12
“Downloading the Application to RAM via BDM” on page 2-16

Tutorial Overview

In this tutorial, you build a stand-alone real-time application from a model
incorporating blocks from the Target Support Package™ FM5 library. We
assume that you are already familiar with the Simulink® product and with
the Real-Time Workshop® code generation and build process.

In the following sections, you will

¢ Configure the model
¢ Generate code from a subsystem
¢ Download code by one of the following methods:

= Download to target RAM via a serial connection, using the Download
Control Panel utility (provided with the Target Support Package FM5
product)

= Download to target RAM via a CAN connection, using the Download
Control Panel utility

= Download to target RAM via a BDM connection
¢ Execute the code on the target
After you complete this tutorial, you may want to learn how to deploy

generated code into the MPC555 flash memory. See “Downloading Boot and
Application Code” on page 2-18 for that information.

2-5

2 Generating Stand-Alone Real-Time Applications

Before You Begin

This tutorial requires the following specific hardware and software in addition
to the Target Support Package FM5 product:

¢ Phytec phyCORE-MPC555 development board

The tutorial model utilizes two LEDs on the phyCORE-MPC555 board.
These LEDs are connected to pins MPI032B0 and MPI032B1 on the MPC555
MIOS digital output pins. If you are using a different development board,
you may be able to obtain the same functionality by making similar
connections.

¢ A supported toolchain for compiling and debugging. Currently supported
toolchains are

= Wind River Compiler and Wind River Systems SingleStep™ from Wind
River Systems

= CodeWarrior® from Freescale™
See “Setting Up Your Toolchain” on page A-3 for details.
e Hardware to enable downloading:

If you want to download generated code to the target board over serial
you will need a serial cable to connect your host PC to the target board.

If you want to download over BDM you will need a BDM device.

If you want to download via CAN, you will need a supported CAN card
and drivers from Vector-Informatik. See “CAN Hardware and Drivers”
on page A-20.

Configuring Target Preferences and Boot Code

e Make sure that your target preferences are set correctly for your
development tools. See “Setting Target Preferences” on page 1-18.

® Once your target preferences are set for your toolchain you must download
bootcode to the target before you can work through this tutorial. See
“Download Boot Code to Flash Memory” on page 1-25.

Tutorial: Creating a New Application

The Example Model

In this tutorial we will use a simple example model, mpc555rt_led, from the
directory matlabroot/toolbox/rtw/targets/mpc555dk/mpc555demos.

This directory is on the default MATLAB® path. The path matlabroot is the
location where MATLAB is installed.

1 Open the model.
mpc555rt_led

2 Save a local copy to your working directory. We will work with this copy
throughout this exercise.

mpch55rt_led_demo Model, Root Level on page 2-7 shows the example
model at the root level. We will only use this level in simulation.

(.

s Scope
Target LED

mpc555rt_led_demo Model, Root Level

Scope

Y

3 Double-click on the Target_ LED subsystem block.

Target_LED Subsystem on page 2-7 shows the Target LED subsystem,
from which we will generate code.

+H HH+

R

IR

+H HH H

Fulse o | Digital Out
Genearator Ll NI
TiTT!T MIOS Digital Out
4+

Fulse

Ganeratord Seope

P LSS5
Resource
Configuration

Target_LED Subsystem

2 Generating Stand-Alone Real-Time Applications

In the Target LED subsystem, two square wave signals are multiplexed and
routed to the MIOS Digital Out block. The MIOS Digital Out block accepts a
vector of numbers representing pins 0-15 on the MIOS 16-bit Parallel Port I/O
Submodule (MPIOSM) on the MPC555. As the square wave signals oscillate
between 0 and 1, the MIOS Digital Out block writes corresponding logic
values to the appropriate pin on the port.

This figure shows the parameters of the MIOS Digital Out block.

=]Block Parameters: MIDS Digital Duk e |

—MPCE5% Digital Output (MPIOSM] [mask] (link)

Setz the logical state of specified ping on the MIOS 16-bit parallel port [/0 submodule
[MPIOSM]. ‘wWhen the input signal iz greater than zera a logical one is witten to the
cormesponding pin; othenwise a logical zer i written,

Specify the bits you want to zet as a vectar of numbers from [0..15], coresponding to
pinz MPIO32B 0. MPIO32B15.

—Parameters
Bits:
jio1]
Initial Output Level;
jo

Sample tirme:

K

™ Enable pass through (show simulation output)

s LCancel Help Spply

The Bits field is set to the vector [0 1]. The block maps this vector to
the MPC555 MIOS digital output pins MPI032B0 and MPI032B1. When the
application runs, it will send a pulse signal to these output pins. On the
phyCORE-MPC555 board, these signals are connected to two of the LEDs,
which will switch on and off at the frequency set in the respective pulse
generator blocks.

In addition to the Pulse Generator, Mux, MIOS Digital Out, and Output blocks,
the Target_LED subsystem contains a MPC555 Resource Configuration object.
When building a model with driver blocks from the Target Support Package

FMS5 library, you must always place a MPC555 Resource Configuration object
into the model (or the subsystem from which you want to generate code) first.

Tutorial: Creating a New Application

The purpose of the MPC555 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks, the
MPC555 Resource Configuration object is not connected to other blocks via
input or output ports. Instead, driver blocks (such as the MIOS Digital Out
block in the example model) query the MPC555 Resource Configuration object
for required information.

For example, a driver block may need to find the system clock speed that is
configured in the MPC555 Resource Configuration object. The MPC555 has a
number of clocked subsystems; to generate correct code, driver blocks need to
know the speeds at which these clock busses will run.

The MPC555 Resource Configuration window lets you examine and edit the
MPC555 Resource Configuration settings. To open the MPC555 Resource
Configuration window, double-click on the MPC555 Resource Configuration
icon. This figure shows the MPC555 Resource Configuration window for
the Target LED subsystem.

<) MPC555 Resource Configuration ;Iglll

Active Configurations System Configurstion |

______ Brs — CLKOUT 20000000.0
mpcSSSdriversModular InputiOutput System (MIOS1) | — MPCSe_Wariant :I jilala]
— Qscillator_Freguency 20
— RT_OMESTEP_IRG_LEVEL :l IMT_LEWVELD
— Systern_Clock 20000000.0
— Bystem_Freguency 400000000
— USIU_PLFRCR_B_DINF a
— USIU_PLFRCR_B_MF a
— USIU_SCCR_B_DFMH i
— USIU_SCCR_B_DFML a
— USIU_SCCR_B_EBDF i
| | 2]
ASt'atus |
0K : j
Ok | Apply | Help |

In this tutorial, we will use the default MPC555 Resource Configuration
settings. Observe, but do not change, the parameters in the MPC555
Resource Configuration window. To learn more about the MPC555 Resource
Configuration object, see MPC555 Resource Configuration.

2 Generating Stand-Alone Real-Time Applications

2-10

Close the MPC555 Resource Configuration window before proceeding.

The next step in this tutorial is generating code.

Generating Code

We will now look at settings and then generate application code:

1 Select Simulation > Configuration Parameters. The Configuration

Parameters dialog opens.

2 Select Real-Time Workshop in the tree, as shown below.

#, Configuration Parameters: mpc555rt_led,/Configuration (Active)

Browse... |

I7|

- Memary Sections
- ET MPCS%x real-tim...
- ET MPCS%x real-tim...

9

Select: — T arget selection
- Solver :
Ay R Systern target file: | rpc5Bart e
- [ptimization Language: I I5:
[Diagnostics Description: Target Support Package FM5 [real-time]
- Sample Time -
- [1aka W alidity r Build prac
- Type Conversion TLE optionS'I
- Connectivity S -
- Compatitility I akefile configuration
[R ¥ Generate makefile
- Saving
~Hardware Implementation Make command: Imake_rtw
- Model Referencing Template makefile: Impc:555[t.tmf
BF eal-Time “Workshop
- Report -
- Comments — Custom storage cla
- Spmbols I lanore custom storage classes
- Cugtom Code
s [T Generate code only
- |nterface
- Code Style
- Templates
- [ata Placement
- Data Type Replace...

Ok I LCancel |

Build |

=

Help | Apply |

3 Notice the RTW system target file for real-time deployment is

mpc555rt.tlc.

To see how to change from real-time deployment to processor-in-the-loop or
algorithm export, click on the Browse button to open the System Target

Tutorial: Creating a New Application

File Browser. In the browser, observe the Target Support Package FM5
options. Click Cancel to keep the default real-time setting and return to
the Real-Time Workshop pane.

4 Select ET MPC5xx real-time options (1) in the tree. The RAM option
should be selected from the Target memory model menu. This option
directs the Real-Time Workshop build process to generate a code file
suitable for downloading and execution in RAM. The files for both RAM
and flash are in Motorola S-record format.

Leave the options set to their defaults. The code generation options should
appear as shown below (though optimization switches settings vary
between toolchains).

Optimize compiler far I speed
Cornpiler optimization switches I' =0
T arget memory model I Fér

Build action I Naone

¥ Use prebuilt R TwW libraries

5 You are now ready to build the application. Do this by right-clicking on the
Target_ LED subsystem and selecting Real-Time Workshop > Build
Subsystem. Then click the Build button in the following dialog.

6 On successful completion of the build process, two files are created in the
working directory:

a Target LED ram.s19: This file is for serial or CAN download. It is code
only, without symbols, suitable for execution on the target system.

b Target_ LED_ram.elf: This file is for BDM download.

If debug is selected in the compiler optimization settings, the elf file will
contain debugging symbols as well as code. These symbols are suitable
for use with a symbolic debugger such as Wind River Systems SingleStep
or Freescale CodeWarrior. The default optimization setting is speed, so
no symbols are included. Symbols are only generated for a debug build.
See “Compiler Optimization Switches” on page 1-23.

You can download to RAM:

2-11

2 Generating Stand-Alone Real-Time Applications

2-12

® Via Serial or CAN, using the Download Control Panel utility (with
Vector-Informatik hardware if you are using CAN), as described in
“Downloading the Application to RAM via Serial or CAN” on page 2-12.

® Via the BDM port, as described in “Downloading the Application to RAM
via BDM” on page 2-16.

Downloading the Application to RAM via Serial or
CAN

The Download Control Panel utility can be used to download application
code to MPC555 RAM or to MPC555 flash memory.

In this section, you will use the Download Control Panel utility to download
the generated Target LED ram.s19 file to RAM on the target system. The
s19 file is for download over serial or CAN.

Target_LED_ram.elf is for BDM download, as described in the next section,
“Downloading the Application to RAM via BDM” on page 2-16. Recall you can
perform a debug build to include debugging symbols in the elf file.

Do the following before you begin:

¢ If you are using serial, make sure you have connected a serial port on your
PC to serial port 1 (RS232-1) on the target hardware.

¢ If you are using CAN, make sure that your Vector-Informatik CAN card
and drivers are installed and configured properly. See “CAN Hardware and
Drivers” on page A-20. Make sure that the desired CAN port on the PC
card is connected to the CAN A port on the target hardware.

e Make sure that you have set up your toolchain as described in “Setting
Up Your Toolchain” on page A-3, and downloaded boot code to the flash
memory of the MPC555 as described in “Download Boot Code to Flash
Memory” on page 1-25.

e Make sure that nothing is connected to the BDM port of your development
board.

e Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec MPC555 Jumper Settings” on page A-14.

Tutorial: Creating a New Application

¢ Cycle the power (or perform a hard reset) on your development board, to
clear the RAM.

To download the generated Target LED ram.s19 file to RAM:

1 Start the Download Control Panel in one of the following ways:

® Use the MATLAB Start menu. Select Start > Links and
Targets > Target Support Package FM5 > Download RAM /
FLASH-Based Application (via CAN / Serial).

® Type embedded_target_download at the MATLAB command prompt.

® You can also open the Download Control Panel automatically at
the end of the build process. Before you start the build, you can select
Launch Download Control Panel from the Build action options on
the ET MPC5xx real-time options (1) pane of the Configuration
Parameters dialog. You can see an illustration of this pane in step 4 of
“Generating Code” on page 2-10.

2 After using any of these three options, the Download Control Panel
dialog opens.

d Control Panel I]

3| Communication Citions I

Executahle type : I RAM application code LI

Executable filename :

Mo file selected

Stetus | Press ‘Start Downioad' to downioad.

Start Dovenload |

Save Settings | Ok | Cancel | Help |

Note RAM application code is automatically selected in the Executable
type menu. You can use exactly the same process to download application

2-13

2 Generating Stand-Alone Real-Time Applications

2-14

code to flash memory by changing this option to Flash application code.
Note that you need to build a model flash.s19 file in order to use this

option, as described in “Downloading Application Code to Flash Memory via
Serial or CAN” on page 2-23. For this exercise leave the RAM option selected.

3 Enter the name of the file to be downloaded into the Filename field, in
this case, Target LED ram.s19. Alternatively, you can use the browse
button (right of the edit box) to navigate to the desired file. The Download
Control Panel should now appear as shown in this figure.

<} Download Control Panel =0l x|

| Comrmunication Options I

Executahle type : I RAM application code LI

Executable filename :

DA TLABGRSweork\Target_LED ram =19

Stetus | Press ‘Start Downioad' to downioad.

Start Dovveniloscd |

Save Settings | Ok | Cancel | Help |

4 Click on the Communications Options tab.

¢ If you are using serial, select Serial from the Connection Type
drop-down menu. Select the appropriate host PC connection port from
COM1 to COM8. You can save your preferences by clicking the Save
Preferences button.

¢ Ifyou are using CAN, select CAN from the Connection Type drop-down
menu. Click Configure to select an appropriate card and port from
the CAN hardware drop-down menu. You must create a MATLAB
application channel to assign to a CAN channel. See “CAN Hardware
and Drivers” on page A-20 for instructions. The default settings for the
other parameters are appropriate for most cases. You can save your
preferences by clicking the Save Settings button. The following figure
shows the Communications Options.

Tutorial: Creating a New Application

Ak Download Control Panel [Z]@
Dovwhlogd
Connection type ; | CAN w
CAMN
Applicstion channel : | MATLAE 1 w

CAN message identifier (CROY: |BFA
CAM message identifier (DTOY . EFE
CCP station address (16-hit integer) : 1

(oo v)

5 Click the Download tab. Then click the Start Download button.

When you click Start, the Download Control Panel’s Status box
changes to read Press reset or power-cycle your development board
to start download.

6 Press the Reset button on your PhyCORE-MPC555 board (or cycle the
power). The Download Control Panel changes its Status box to inform
you that the connection is OK.

Downloading commences, and the Start button caption changes to Stop.

7 While downloading proceeds, progress messages are displayed in the
Download Control Panel. After the download, the Stop button caption
changes back to Start.

If the download does not succeed, reset your development board and return
to step 5.

8 Close the Download Control Panel dialog box.

9 A few seconds after a successful download, the boot code transfers control
to the application program. At this point, you should see two LEDs (red
and green) blinking on the target board. This indicates that the program
is operating correctly.

2-15

2 Generating Stand-Alone Real-Time Applications

2-16

Note that you can monitor the progress of a CAN download using a program
such as CANalyzer. Alternatively, you can use the btest32 utility supplied
with the Vector Informatik driver software. You can invoke the btest32 utility
from the PC command prompt. The following example runs btest32 with a bit
rate of 500000 (500 kbaud):

btest32 500000

Downloading the Application to RAM via BDM

You can choose to automatically download to the target over BDM on
completion of the build process. Follow these steps to generate, download
and execute the Target LED ram.elf file in RAM on the target system.
Target_LED_ram.elf can contain both code and symbols for use with the
debugger if you perform a debug build. You will not perform a debug build
in this tutorial, so the file will contain code only.

If you want to download application code to MPC555 flash you can use

serial or CAN. The download process is exactly the same as described in
“Downloading the Application to RAM via Serial or CAN” on page 2-12, except
you change the Download option from RAM to Flash. Note that you also need
to generate a model flash.s19 file to download to flash memory, as described
in “Downloading Application Code to Flash Memory via Serial or CAN” on
page 2-23. If you want to download the application to flash memory over
BDM manually using your own tools, then the file you need to download is
the S-record file model flash.s19.

Do the following before you begin:

e Make sure that you have downloaded boot code to the flash memory of the
MPC555. See “Download Boot Code to Flash Memory” on page 1-25.

¢ Connect the BDM port of your development board to parallel port LPT1
of your host PC (or the port specified for your toolchain if different, see
“Setting Up Your Toolchain” on page A-3).

e Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec MPC555 Jumper Settings” on page A-14.

To generate and download the Target_LED_ram.elf file to RAM over BDM,

1 Select Simulation > Configuration Parameters.

Tutorial: Creating a New Application

The Configuration Parameters dialog appears.

2 Under Real-Time Workshop in the tree, click to select ET MPC5xx
real-time options (1).

3 Select Run_via_BDM or Debug_via_BDM from the Build action drop-down
menu.

4 Ensure the Target memory model selected is RAM (not FLASH).

Notice the default Optimize compiler for setting is speed. If you change
this setting to debug, the generated elf file will contain both code and
symbols for use with a symbolic debugger. See “Compiler Optimization
Switches” on page 1-23 for more information on these settings. For this
tutorial, leave this setting at the default, as shown.

Optimize compiler for I speed ﬂ

Compiler optimization switches I' =0

T arget memony model I Rabd

=l
=l

Build action | Run_via_BDM
v Use prebuilt BTw! libraries

5 Right click on the Target_ LED subsystem and select Real-Time Workshop
> Build Subsystem.

You will see progress messages in the MATLAB Command Window as code is
generated. Your debugger will be automatically started and will download
the code to the target.

Also available is the Start menu option Debug RAM-Based Application
(Via BDM). Use this option to select a *.elf file and debug over BDM as
described above. You can use this option to debug a model you have already
built without having to go through the build process again.

2-17

2 Generating Stand-Alone Real-Time Applications

2-18

Downloading Boot and Application Code

In this section...

“RAM vs. Flash Memory” on page 2-18

“Overview of Memory Organization and the Boot Process” on page 2-20
“Downloading Application Code” on page 2-22

“Stand-Alone Download Control Panel Utility” on page 2-26

“Downloading Boot or Application Code via CAN Without Manual CPU
Reset” on page 2-27

“Rebuilding the Boot Code and Device Driver Libraries” on page 2-28
“Running Applications with a Debugger” on page 2-30

RAM vs. Flash Memory

The Target Support Package™ FM5 product creates a file containing the
application executable code that must be programmed onto the MPC555. It
can also write a file including symbolic information suitable for use with a
debugger. The files are written to your working directory.

The format of the code and symbol files is the same for both RAM and flash
memory targets, suitable for downloading into RAM or on-chip flash memory.
The naming convention for these files is

® model_flash.s19 or model_ram.s19 (for serial and CAN download)
® model flash.elf or model ram.elf (for BDM download, can contain
debugging symbols).

You can download code to RAM or flash memory via serial or CAN download,
or via the MPC555’s BDM port.

There are advantages and disadvantages to each memory model.
Loading the application code into RAM is faster than loading it into flash

memory. In addition, by using RAM you can avoid using up the programming
cycles of the flash memory; this lengthens the usable lifetime of the flash

Downloading Boot and Application Code

memory. Running the application from RAM is a good option for initial testing
of the application.

Note The MPC5xx flash memory has a limited lifetime, which is shortened
each time the flash memory is programmed. To extend product life,
Freescale™ recommends using flash programming only when necessary.

To program applications into RAM, your target hardware must have
additional RAM external to the MPC555 on-chip RAM. The Target Support
Package FM5 product does not support downloading of code to MPC5xx
on-chip RAM, because the MPC555 has only 26K of on-chip RAM and the
MPC565 has 36K.

For final deployment, or to load code onto a test board for use at a test site,
you will generally want to program your code into the nonvolatile flash
memory. 416K of flash memory is available for application code (992K on the
MPC565). Code programmed into flash memory is persistent and restarts
when the board is powered on.

To download code to flash memory, you must first load a binary boot code file
into the flash memory. The Target Support Package FM5 product provides the
boot code file. You must load the boot code into flash memory in order to run
application code. The boot code is always required even for RAM applications.

To understand the download process, it is first necessary to review the
memory organization on the MPC555 and the operation of the boot code. This
is described in the next section, “Overview of Memory Organization and the
Boot Process” on page 2-20.

¢ Ifyou just want to know how to download application code, you can jump
ahead to the section “Downloading Application Code” on page 2-22.

¢ If you want to know how to download boot code, see the Getting Started
section “Download Boot Code to Flash Memory” on page 1-25.

2-19

2 Generating Stand-Alone Real-Time Applications

2-20

Overview of Memory Organization and the Boot
Process

Purpose of Flash Memory Boot Code

When reading this section, you may want to refer to the internal memory
map of the MPC555 in section 1.3 of the MPC555 User’s Guide. You can find
this document at the following URL:

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM. pdf

To run generated code from the RAM or flash memory, you must load the first
32K flash sector with boot code. The primary purpose of the boot code is to
load and start application code when the board is powered on or reset. The
boot code also acts as a download agent that downloads generated code into
RAM or flash memory via CAN or serial.

The boot code manages the exception handling for the MPC555. Applications
don’t directly handle exceptions but receive them from the boot code. If the
boot code is not installed, then applications will not work correctly.

Memory Organization

The MPC555 has a total of 448K of on-chip flash memory (1024K on the
MPC565). This memory is organized into banks of 32K each. The first bank is
always used to store the boot code and the remaining 416K is available for
application code (992K on the MPC565). When using the Target Support
Package FM5 product, the on-chip flash memory is located at absolute address
0x0000 in the MPC555 address space.

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

Downloading Boot and Application Code

Ox0000
Boot Code
Ox 8000
Application
Code
Ox 70000

Organization of Flash Memory

To run a stand-alone application on the MPC555, it is first necessary to
program the boot code into the first bank of flash memory.

The Boot Process

The boot code is executed following power on or reset (unless a probe

is connected to the BDM port). Normally, the boot code performs basic
hardware initialization and then branches to the application code. Once the
application code is running, there is no way to return to the boot code except
by performing a reset.

One of the important functions of the boot code is to serve as agent that allows
program code to be downloaded over CAN or serial. There are two methods of
initiating a program download over CAN or serial:

¢ The default method for initiating a program download is to send a special
serial or CAN message during a short window of time while the boot code
is executing. In the supplied boot code, this window is set to 40ms. If
this special message is received during the window while the boot code is
executing, a program download sequence commences and a new application
can be programmed into RAM or flash memory. See “Downloading
Application Code to Flash Memory via Serial or CAN” on page 2-23 for
details.

¢ Alternatively, it is possible to commence a program download over CAN
while application code is running on the target. To initiate a download
over CAN, you must include a special block in your Simulink® model. This
block is the CAN Calibration Protocol block. See “Downloading Boot or

2-21

2 Generating Stand-Alone Real-Time Applications

2-22

Application Code via CAN Without Manual CPU Reset” on page 2-27 for
details.

The bootcode download process erases the non-volatile flash memory
(including the shadow area) before writing the new bootcode, and the previous
configuration word is removed. The bootcode download process does not write
a replacement configuration word to the shadow flash. Typically, users of the
Target Support Package FM5 product do not use a Hard Reset Configuration
Word that is stored in non-volatile memory (the shadow flash). Instead, the
development board is generally assumed to source the configuration word
from the data bus.

If you want to use a custom configuration word, you must manually program
the shadow flash to an appropriate value for the system. This would only need
to be done along with the irregular updates to the bootcode.

Downloading Application Code

The following sections describe how to download generated image files and run
generated code on the target hardware. They also describe how to download
to RAM and to flash memory, via either serial, CAN, or the BDM port.

Downloading the Application Code to RAM

To download application code to RAM, you must generate a code file in
Motorola S-Record format, which is suitable for downloading and execution in
RAM. To do this, select the RAM option from the Target memory model menu
in the ET MPC5xx real-time options (1) category of the Configuration
Parameters dialog. The build process creates two files in the working
directory:

e Files created:

= model_ram.s19: For serial or CAN download. Code only, without
symbols, suitable for execution on the target system.

= model ram.elf: For BDM download. Can also contain symbols if you
perform a debug build, suitable for use with a symbolic debugger such as
Wind River Systems SingleStep™.

Downloading Boot and Application Code

® You can download to RAM via serial or CAN, using the Download Control
Panel utility (with Vector-Informatik CAN hardware if applicable), as
described in “Downloading the Application to RAM via Serial or CAN”
on page 2-12.

* You can also download to RAM via BDM, as described in “Downloading the
Application to RAM via BDM” on page 2-16.

Downloading the Application Code to Flash Memory

To download application code to flash memory, you must generate a code
file which is suitable for downloading and execution in flash memory. To
do this, select the FLASH option from the Target memory model menu in
the ET MPC5xx real-time options (1) category of the Configuration
Parameters dialog. The build process creates the file model flash.s19
which contains an image of the executable code, in the working directory.

You can download the file to flash memory via serial or CAN, using the
Download Control Panel utility (with Vector-Informatik hardware if using
CAN), as described in the following section. Note you can also use the Start
menu option to use a BDM (and serial or CAN) to download application code
to flash memory. If you want to download the application to flash memory
over BDM manually using your own tools, then the file you need to download
is the S-Record file model_flash.s19.

Downloading Application Code to Flash Memory via Serial
or CAN

You can use the Download Control Panel to download generated application
code to the MPC555 flash memory. Note that except for changing the
Download option from RAM to Flash, the process is the same as downloading
to RAM.

Do the following before you begin:

¢ If you are using serial, make sure you have connected the serial port on
your PC to serial port 1 (RS232-1) on the target hardware.

¢ If you are using CAN, make sure that your Vector-Informatik CAN card
and drivers are installed, and are configured properly. See “CAN Hardware

2-23

2 Generating Stand-Alone Real-Time Applications

2-24

and Drivers” on page A-20. Make sure that the desired CAN port on the PC
card is connected to the CAN A port on the target hardware.

Make sure that you have set up your toolchain and downloaded boot code to
the flash memory of the MPC555, as described in “Setting Up and Verifying
Your Installation” on page 1-17.

Make sure that nothing is connected to the BDM port of your development
board.

Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec MPC555 Jumper Settings” on page A-14.

To download the generated model_flash.s19 file to flash:

1 Open the Download Control Panel in one of the following ways:

¢ Use the MATLAB® Start menu. Select Start > Links and
Targets > Target Support Package FM5 > Download RAM /
FLASH Based Application (via CAN / Serial).

® Type embedded_target_download at the MATLAB command prompt.

® You can also open the Download Control Panel automatically at
the end of the build process. Before you start the build process, you
can select Launch Download Control Panel from the Build action
options on the ET MPC5xx real-time options (1) tab of the Model
Explorer. You can see an illustration of this tab in step 4 of “Generating
Code” on page 2-10.

After using any of these three options, the Download Control Panel
window opens.

2 Select Flash application code from the Executable type menu.

3 Enter the name of the file to be downloaded into the Executable filename

field. Alternatively, you can use the browse button to navigate to the
desired file. Remember the model flash.s19 files are for serial or CAN
download to flash. The Download Control Panel should now appear as
shown in this figure.

Downloading Boot and Application Code

B wnload Control Panel]

ommunication Optiohs I

Executable type - | Flash application code =

Executable filsnamme : | by gtestaTLABworkiTarget_LED flash.s19

Statuzs: | Prass Start Downioad o downiosd,

Start Dowwnlosd |

Save Seftings | 024 | Cancel | Helg |

4 Click on the Communications Options tab. If you have not saved your
preferences already, select Serial or CAN from the Connection Type
drop-down menu. If necessary, select an appropriate card/port. The default
settings for the other parameters are appropriate for the default download
process. You can save your preferences by clicking the Save Preferences
button. The Communications Options configured for a Vector-Informatik
CAN-AC2-PCI card, channel 1, are shown in the section “Downloading the
Application to RAM via Serial or CAN” on page 2-12.

5 The next step is to download code. Click the Download tab, and then
click the Start button.

e Ifthere is an application currently running on the target that contains
a CAN Calibration Protocol (CCP) kernel, the download proceeds
automatically. For more details see “Downloading Boot or Application
Code via CAN Without Manual CPU Reset” on page 2-27.

e If the CCP condition is not met, you must immediately press the reset
button on your PhyCORE-MPC555 board after clicking the Start button.
You will see a message prompt in the Status box: Press reset or
power-cycle your development board to start download.

2-25

2 Generating Stand-Alone Real-Time Applications

When you press the Reset button on your PhyCORE-MPC555 board (or
cycle the power), the Download Control Panel changes its Status
box to read CCP Connection OK. Please wait till completion or
press Stop to terminate the download.

Downloading commences, and the Start button caption changes to
Stop. While downloading proceeds, progress messages are displayed in
the Download Control Panel. A successful download ends with an
information dialog and the Stop button caption changes back to Start.

6 If the download does not succeed, reset the board and return to step 5.

You can monitor the progress of the flash download over CAN by using a
program such as CANalyzer. Alternatively, you can use the btest32 utility
supplied with the Vector Informatik driver software. You can invoke the
btest32 utility from the PC command prompt. The following example runs
btest32 with a bit rate of 500000 (500kbaud):

btest32 500000
7 Close the Download Control Panel window.

Once the download process is complete, the application starts running
immediately on the target hardware.

Stand-Alone Download Control Panel Utility

Note that you can use the Download Control Panel utility separately as a
stand-alone application from MATLAB. For instructions, run this command
in MATLAB:

system(['"' matlabroot '\toolbox\rtw\targets\common\tgtcommon\embedded_target_download.bat"-help']);

Alternatively, run the batch file found here:

matlabroot\toolbox\rtw\targets\common\tgtcommon\embedded_target_download.bat -help

where matlabroot is the full path to your MATLAB installation directory.

2-26

Downloading Boot and Application Code

Downloading Boot or Application Code via CAN
Without Manual CPU Reset

The default method for download over CAN requires that the target
processor be manually reset in order for the download process to begin. This
requirement may be problematic if the target hardware is not physically
accessible or if it cannot be individually reset or powered down/up.

It is possible to remove this requirement for manual reset if a suitably
prepared application is already running on the target. To do this, include
a CAN Calibration Protocol block within the model (see CAN Calibration
Protocol (MPC555)).

When the currently running application includes the CAN Calibration
Protocol block, the download process begins when you click on the Start
button of the Download Control Panel,; it is not necessary to manually
reset the target hardware to initiate the download. A reset of the processor is
triggered by a CCP Program Prepare message. After the Program Prepare
message is received at the target, there will be a short delay until the
processor resets and continues the download process by transmitting a
response to the Program Prepare message.

The length of the delay will be the watchdog timeout period of the application.
By default, for a 20MHz application, this will be approximately 7 seconds; for
a 40MHz application, this will be approximately 3 seconds.

It is possible to explicitly set the timeout period of the watchdog timer, by
using the Watchdog block in the MPC555 device driver library. See Watchdog .

The Download Control Panel is configured to allow a maximum delay of
10 seconds between sending the Program Prepare message and receiving a
response from the target. If this delay is exceeded, an error will be reported
by the download tool.

When using the CAN Calibration Protocol block, you must specify

¢ CAN message identifier for Command Receive Objects
¢ CAN message identifier for Data Transmit Objects
¢ CAN Calibration Protocol Station Address

2-27

2 Generating Stand-Alone Real-Time Applications

2-28

Note that the values specified are permitted to differ from the default values
for these parameters that are programmed in the boot code. When performing
the download procedure using the Download Control Panel, you must
ensure that the parameters specified on the Communications Options tab
match those specified in the currently running application.

For an example of how to use the CAN Calibration Protocol block for signal
monitoring, parameter tuning and automatic download, see the demo model
mpc555rt_ccp.

Rebuilding the Boot Code and Device Driver Libraries

You must rebuild the libraries to enable execution profiling for device driver
interrupt service routines. See “Enabling Execution Profiling for Device
Driver Interrupt Service Routines” on page 2-55 for instructions in that case.

You cannot change the default boot code parameter values except by modifying
and recompiling the boot code. If it is absolutely necessary to do this, you can
recompile the boot code as follows:

1 Select Start > Links and Targets > Target Support Package
FMS5 > Rebuild MPC555 Driver Library.

The Build Driver Libraries dialog opens.

Target for Freescale MPC5xx |

<P Build MPCS:cx driver library using Diab.,

-1

‘which optimization level do you wish to use 7
speed = -X0
size = -A0 -Asize-opk

debug=-g

The above optimization settings are the values set in your
Target for Freescale MPCSxx Target Preferences

clean = Delete all object files

Choose ‘clean’ to delete all object files if you wish

to completely rebuild the libraries, Selecting the other
optimization options without: cleaning will only rebuild files
that may have changed since the last library build.

Downloading Boot and Application Code

2 Select the compiler optimization setting you want to use for the build (from
speed, size, debug, or clean).

® See “Compiler Optimization Switches” on page 1-23 for more information
on the speed, size and debug settings, which are compiler-specific. You
can edit these settings in the Target Preferences dialog.

® The clean option deletes all object files. Note that to ensure a rebuild
of all files you should run a clean build followed by a build using your
required optimization setting. Otherwise only files which have changed
since last library build will be rebuilt.

The Target Support Package FM5 product automatically recompiles the
code, using your settings in target preferences.

Note You should not make changes to the boot code without fully
understanding the effect of your changes. Note also that the boot code may
be changed without notice in future releases of this product.

If a required prebuilt library is not found during the build process, then
you see a dialog box with instructions to rebuild the missing library. For
example, a prebuilt copy of the Signal Processing Library is not installed
with the product.

It is preferable to rebuild via the Start menu rather than using the commands
suggested in the dialog box, because any rebuild done via the dialog is
dependent on the options selected in the Real-time Workshop> Interface

> Software Environment > Support options, and any library created is
based on these settings. You then need to rebuild your model to complete

the build process.

Boot Code Parameters for CAN Download
The boot code parameters for download over CAN determine

® CAN bit rate
® CAN message identifier for Command Receive Objects (CRO)
¢ CAN message identifier for Data Transmit Objects (DTO)

2-29

2 Generating Stand-Alone Real-Time Applications

e CAN Calibration Protocol Station Address

® The duration of the window during which the boot code listens for a
download command message

Default Boot Code Parameters on page 2-30 shows the default values for these
parameters. These defaults should be suitable for most applications.

Default Boot Code Parameters

Parameter Default Value
CAN bit rate 500000

CCP station address 1

CAN message identifier (CRO) 6FA

CAN message identifier (DTO) 6FB

Duration of listening window 40 ms

Running Applications with a Debugger

It is possible to run an application with a debugger. To have full debugging
capabilities it is necessary that both the application and device driver libraries
are built with debug switches enabled.

To run an application with a debugger it is necessary you must go through the
following steps.

1 In the model Configuration Parameters dialog, under the MPC5xx
options section ensure that Optimize compiler for is set to debug.

2 In the Target Preferences ensure that the debug compiler switches are
set appropriately for your configuration; see “Setting Target Preferences”
on page 1-18 for examples.

3 By default the device driver libraries are compiled without debug flags; if
you need to be able to debug device driver code as well as model code you
must re-build the device driver libraries using the debug option. See “Boot
Code Parameters for CAN Download” on page 2-29.

Downloading Boot and Application Code

Once you have performed the above steps and built your model, you can run
it with the source level debugger by selecting Links and Targets > Target
Support Package FM5 > Debug RAM-Based Application (via BDM)
from the MATLAB Start menu.

2-31

2 Generating Stand-Alone Real-Time Applications

2-32

Parameter Tuning and Signal Logging

In this section...

“Methods for Parameter Tuning and Signal Logging” on page 2-32
“Using External Mode” on page 2-32

“Using a Third Party Calibration Tool” on page 2-41

“Data Acquisition (DAQ) List Configuration” on page 2-44

Methods for Parameter Tuning and Signal Logging

The Target Support Package™ FM5 product supports parameter tuning and
signal logging either using Simulink® external mode or with a third party
calibration tool. In both cases the model must include a special block, the
CAN Calibration Protocol block (see CAN Calibration Protocol (MPC555)).

Using External Mode

The Simulink external mode feature enables you to log signals and tune
parameters without requiring a calibration tool. This section describes the
steps for converting a model to use external mode.

External mode is supported using the CAN Calibration Protocol block and
ASAP2 interface. The CAN Calibration Protocol block is used to communicate
with the target, downloading parameter updates and uploading signal
information. The ASAP2 interface is used to get information about where in
the target memory a parameter or signal lives.

Note You must configure the host-side CAN application channel. See
“Configuring the Host Vector CAN Application Channel ” on page 2-34.

To prepare your model for external mode, follow these steps:

1 Add a CCP driver block.

Parameter Tuning and Signal Logging

2 Add a Switch External Mode Configuration Block (for ease of use; you can
also make changes manually).

3 Identify signals you want to tune, and associate them with
Simulink.Parameter objects with ExportedGlobal storage class. It is
important to set the data type and value of the Simulink.Parameter object.
See “Using Supported Objects and Data Types” on page 2-34.

4 Identify signals you want to log, and associate them with canlib.Signal
objects. It is important to set the data type of the canlib.Signal. See
“Using Supported Objects and Data Types” on page 2-34.

For information about visualizing logged signal data, see “Viewing and
Storing Signal Data” on page 2-36.

5 Load the the Simulink.Parameter and canlib.Signal data objects into
the base workspace.

6 Configure the model for building by double-clicking the Switch External
Mode Configuration block. In the dialog box, select Building an
executable, and click OK.

7 Build the model, and download the executable to the target

8 After downloading the executable to the target, you can switch the model to
external mode by double-clicking the Switch External Mode Configuration
Block. In the dialog box that appears, select External Mode, and click OK.

9 You can now connect to the target using external mode by clicking the
Connect button.

10 If you have set up tunable parameters, you can now tune them. See
“Tuning Parameters” on page 2-35.

If you do not want to use the Switch External Mode Configuration block, you
can configure for building and then external mode manually. For instructions,
see “Manual Configuration For External Mode” on page 2-39.

See the following topics for more information:

® “Configuring the Host Vector CAN Application Channel ” on page 2-34

2-33

2 Generating Stand-Alone Real-Time Applications

2-34

e “Using Supported Objects and Data Types” on page 2-34
¢ “Tuning Parameters” on page 2-35

* “Viewing and Storing Signal Data” on page 2-36

e “Manual Configuration For External Mode” on page 2-39

® “Limitations” on page 2-40

Configuring the Host Vector CAN Application Channel

External mode expects that the host-side CAN connection is using the
'"MATLAB 1' application channel. To configure the application channel used by
the Vector CAN drivers, enter the following at the MATLAB® command line:

TargetsComms_VectorApplicationChannel.configureApplicationChannels

The Vector CAN Configuration tool appears. Use this tool to configure your
host-side CAN channel settings.

If you try to connect using an application channel other than 'MATLAB 1',
then you see the following warning in the command window:

Warning:

It was not possible to connect to the target using CCP.
An error occurred when issuing the CONNECT command.

Using Supported Objects and Data Types
Supported objects:

® Simulink.Parameter for parameter tuning

® canlib.Signal for signal logging

Supported data types:

uint8, int8
uintl6, int1l6
uint32, int32

® single

Parameter Tuning and Signal Logging

You need to define data objects for the signals and parameters of interest for
ASAP 2 file generation. For ease of use, create an m-file to define the data
objects, so that you only have to set up the objects once.

To set up tuneable parameters and signal logging:

1 Associate the parameters to be tuned with Simulink.Parameter objects
with ExportedGlobal storage class. It is important to set the data type and
value of the Simulink.Parameter object. See the following m-code for an
example of how to create such a Simulink.Parameter object for tuning:

stepSize = Simulink.Parameter;

stepSize.DataType = 'uint8';
stepSize.RTWInfo.StorageClass = 'ExportedGlobal';
stepSize.Value = 1;

2 Associate the signals to be logged with canlib.Signal objects. It is important
to set the data type of the canlib.Signal. The following m-code example
shows how to declare such a canlib.Signal object for logging:

counter = canlib.Signal;
counter.DataType = 'uint8';

3 Associate the data objects you have defined in the m-file with parameters
or signals in the model. For the previous m-code examples, you could set
the Constant value in a Source block to stepSize, and set a Signal name
to counter in the Signal Properties dialog box. Remember that stepSize
and counter are data objects defined in the m-code.

Tuning Parameters

To tune a parameter, follow these steps:

1 Set dataobject.value in the workspace while the model is running in
external mode. For example, to tune the parameter stepSize (that is, to

change its value) from 1 to 2, enter the following at the command line:

stepSize.value = 2

2-35

2 Generating Stand-Alone Real-Time Applications

2-36

You see output similar to the following:
stepSize =

Simulink.Parameter (handle)
RTWInfo: [1x1 Simulink.ParamRTWInfo]

Description: ''
DataType: 'uint8'
Min: -Inf
Max: Inf
DocUnits: ''
Value: 2

Complexity: 'real’
Dimensions: [1 1]

2 Return to your model, and update the model (press Ctrl+D) to apply the
changed parameter.

Viewing and Storing Signal Data

To view the logged signals attach a supported scope type to the signal (see
“Limitations” on page 2-40 for supported scope types).

Select which signals you want to log by using the External Signal &
Triggering dialog box. Access the External Mode Control Panel from the Tools
menu, and click the Signal & Triggering button. By default, all displays
appear as selected to be logged, as shown in the following example. Edit
these settings if you do not want to log all displays. Individual displays can
be selected manually.

Parameter Tuning and Signal Logging

2 ExternalModeExample: External Signal & Triggering - |EI|5|
Signal zelection
Block Path
X Display ExternallodeExanple /Display ;l [V Select all
W Scopel ExternalModeExanple/3copel Clear A1
X Scopez ExternalModeExanple/Scopesd —I
X Scopeld ExternalModeExanple/3copel on
X Scoped ExternalModeExanple/Scoped
= off

Trger Signal |
j o To Blash |

Trigoer

Source: Imanual vI Mode: Inormal ,l THLHER Sioma: Fart: |1 Element: Iany
-
Curation: EDDD Delay: E _I

I
[&rm when connecting to target [itection Irising d LLevel: p e[s h
Rever‘tl Help I Apply I Cloze I

Storing signal data for further analysis. It is possible to store the logged
data for further analysis in MATLAB.

1 To use the Data Archiving feature of external mode, click Data Archiving

in the External Mode Control Panel. The External Data Archiving dialog
box appears.

2-37

2 Generating Stand-Alone Real-Time Applications

2-38

) ExternalModeExample: External Data Archiving - |EI|£|

Drata archiving
[+ Enakle archiving

Directory: IC: \TEMPE:ternalMods

File: 'ExternalMu:udeData

Ecit Directary Mote... |

Edlt File Mote... |

[Incremert directary swhen trigger armed
[Incremert file after one-shaot
[~ Append file suffix to variable names

['wirite intermediste results to workspace

Rever‘tl Helg | Cloze |

a Select the check box Enable archiving

b Edit the Directory and Filename and any other desired settings.

¢ Close the dialog box.

2 Open the Scope parameters, and select the check box Save data to

workspace.

) 'Scoped’ parameters

General | Diata history Tig: try right clicking on axes

=101

[T Limit data poirts to last: FDUD

[Save dats to workspace

YWarighle name: ISu:npeDataS

Farmat: IS‘truc’ture weith time

Ok | Cancel

Help

| Apply

Parameter Tuning and Signal Logging

3 You may want to edit the Variable name in the edit box. The data that is
displayed on the scope at the end of the external mode session is available
in the workspace with this variable name.

The data that was previously displayed in the scope is stored in .mat files
as previously setup using Data Archiving.

For example, at the end of an external mode session, the following variable
and files could be available in the workspace and current directory:

® A variable ScopeData5 with the data currently displayed on the scope:

ScopeData5
ScopeData5 =

time: [56x1 double]
signals: [1x1 struct]
blockName: 'mpc555rt_ccp/Scopel’

¢ In the current directory, .mat files for the three previous Durations of
scope data:

ExternalMode 0.mat
ExternalMode 2.mat
ExternalMode_ 1.mat

Manual Configuration For External Mode

As an alternative to using the Switch External Mode Configuration block, you
can configure models manually for build and execution with external mode.

To configure a model to be built for external mode:
1 Select Inline parameters (under Optimization in the Configuration

Parameters dialog box). The Inline parameters option is required for
ASAP2 generation.

2 Select Normal simulation mode (in either the Simulation menu, or the
drop-down list in the toolbar).

2-39

2 Generating Stand-Alone Real-Time Applications

2-40

3 Select ASAP2 as the Interface (under Real-Time Workshop, Interface,
in the Data Exchange pane, in the Configuration Parameters dialog box).

After you build the model, you can configure it for external mode execution:

1 Make sure Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). The Inline parameters option is
required for external mode.

2 Select External simulation mode (in either the Simulation menu, or
the drop-down list in the toolbar).

3 Select External mode as the Interface (under Real-Time Workshop,
Interface, in the Data Exchange pane, in the Configuration Parameters
dialog box).

Limitations
Multiple signal sinks (e.g. scopes) are not supported.

Only the following kinds of scopes are supported with External Mode Logging:

¢ Simulink Scope block
¢ Simulink Display block

® Viewer type: scope — To use this option, right-click a signal in the model,
and select Create & Connect Viewer > Simulink > Scope. The other
scope types listed there are not supported (e.g., floating scope).

Before connecting to external mode, you also need to right-click the signal,
and select Signal Properties. In the dialog box, select the Test point
check box, and click OK.

GRT is supported but only for parameter tuning.

It is not possible to log signals with very fast sample times (e.g., 0.0001)
without losing data.

Subsystem builds are not supported for external mode, only top-level builds
are supported.

Parameter Tuning and Signal Logging

Logging and tuning of nonscalars is not supported. It is possible to log
nonscalar signals by breaking the signal down into its scalar components. For
an example of how to do this signal deconstruction, see the CCP demo models,
which use a Demux and Signal Conversion block with contiguous copy.

Logging and tuning of complex numbers is not supported. It is possible to
work with complex numbers by breaking the complex number down into its
real and imaginary components. This breakdown can be performed using
the following blocks in the Simulink Math Operations library: Complex to
Real-Imag, Real-Imag to Complex, Magnitude-Angle to Complex, Complex
to Magnitude-Angle.

Using a Third Party Calibration Tool

The Target Support Package FM5 product allows an ASAP2 data definition
file to be generated during the code generation process. This file can be used
by a third party tool to access data from the real-time application while it

is executing.

ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description used for data measurement, calibration, and diagnostic
systems. You can use the Target Support Package FM5 real-time target
features to export an ASAP2 file containing information about your model
during the code generation process.

Before you begin generating ASAP2 files with the Target Support Package
FM5 real-time target, you should read the “Generating ASAP2 Files” section
of the Real-Time Workshop® Embedded Coder™ documentation. That section
describes how to define the signal and parameter information required by
the ASAP2 file generation process.

The process of generating an ASAP2 file from your model with the Target
Support Package FM5 real-time target is similar to that described in the
Real-Time Workshop Embedded Coder documentation.

How the Process Works

The mpc555rt_ccp demo provides an example of the Target Support Package
FM5 ASAP2 file generation feature.

2-41

2 Generating Stand-Alone Real-Time Applications

2-42

The Target Support Package FM5 product generates an initial ASAP2 file
during the code generation process. At this point, the addresses of signals
and parameters on the target system are unavailable, since the code has
not been compiled and linked. The initial ASAP2 file contains placeholders
for the unresolved addresses.

To supply the required memory addresses, the generated code must be
compiled and the compiler must generate a MAP file.

After the build process, if the Target Support Package FM5 real-time target
detects the presence of the ASAP2 file and a MAP file in the required format,
it performs a post-processing phase. During this phase, the MAP file is used
to propagate the required address information back into the ASAP2 file.

MAP file formats differ between compilers, so the post processing phase is
compiler-specific. The Target Support Package FM5 product provides the
post-processing mechanism for both supported toolchains (Wind River and
CodeWarrior®).

To use the Target Support Package FM5 ASAP2 file generation feature, you
simply need to select the ASAP2 file option in the Configuration Parameters
dialog box, as described in the following section “ASAP2 File Generation
Procedure” on page 2-42. If it is appropriate to back propagate addresses from
the MAP file into the ASAP2 file, then this will also be done automatically.
No other steps are necessary to ensure that the generated MAP and ASAP2
files are automatically post processed.

The names of the ASAP2 file and the MAP file derive from the source model.
The MAP file is generated in the same directory as the source model. The
ASAP2 file is written to the build directory.

ASAP2 File Generation Procedure

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to ASAP2 CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the corresponding Simulink.Parameter and Simulink.Signal
objects in the MATLAB workspace.

Parameter Tuning and Signal Logging

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property for each object:

® ExportedGlobal
® ImportedExtern

® ImportedExternPointer
ExportedGlobal is the default storage class.

4 Configure the other data object properties for each object. See “Defining
ASAP2 Information” in the Real-Time Workshop® documentation.

5 In your model window, select the menu item Simulation > Configuration
Parameters.

The Configuration Parameters dialog box appears.
6 Select Optimization in the tree.
7 Select the Inline parameters option.

Note that you should not configure the parameters associated with your
data objects in the Model Parameter Configuration dialog box (reached
via the Configure button). If a parameter that resolves to a Simulink data
object is configured using the Model Parameter Configuration dialog
box, the dialog box configuration is ignored. You can, however, use the
Model Parameter Configuration dialog to configure other parameters
in your model.

8 Under Real-Time Workshop, select Interface in the tree.

9 Select the ASAP2 option from the Interface drop-down menu in the Data
exchange frame, as shown in the following figure.

2-43

2 Generating Stand-Alone Real-Time Applications

*‘b Configuration Parameters: mpc555rt_led/Configuration (Active)

Select:

- Solver
- [ata Impaort/Ewpart
- O ptimization
[=1- Diagnostics
-~ Sample Time
- [ata W alidity
- Tyupe Conversion
- Conheclivity
-+ Compatibility
- b odel Referencing
-~ Saving
ardware Implementation
odel Referencing
eal-Time Workshop
- Report
- Comments
- Symbals
Custom Code
Diebug
Interface
- Code Style
- Templates
- Dlata Placement
- Data Type Replace...
- Memory Sections
- ET MPCBix realtim...
-ET MPCBx realtim...

E -

J

— Software enviionment

T arget function librany: ICBQ!CQD [&MS1)

Utilitw function generation; |Aul0

Support: ¥ floating-point numbers I~ non-firite numbers ™ complex numbers

[~ absolute time ™ continuaus time ™ norvinlined 5-functions

Ll

— Code interfac

I~ GRT compatible callinterface ¥ Single output/update function I Temiinate function required
™ Generate reusable code

I Suppress erar status in realtime model data stucture

— Werification

[~ Enable portable word sizes

Suppoit software-in-the-doop [SIL] testing
’7|_ Create Simulink [S-Function] block

I~ M&T file logging

— Data exchangs

Interface:

0K I Cancel

e |

=l

Apply |

10 Click Apply.

11 Select Real-Time Workshop in the tree, then click Build.

The ASAP?2 file is generated as part of the build process.

Data Acquisition (DAQ) List Configuration
The Target Support Package FM5 product supports the Data Acquisition
(DAQ) List feature of the CAN Calibration Protocol (CCP). DAQ lists allow

efficient synchronous signal monitoring. The Target Support Package FM5
CCP block supports DAQ lists (see CAN Calibration Protocol (MPC555) for

details).

Simulink.Signal objects are used for monitoring a signal in the CCP polling
mode of operation. To monitor a signal in a DAQ list, however, you must
configure the signal somewhat differently. The differences are as follows:

2-44

Parameter Tuning and Signal Logging

¢ Instead of defining a Simulink.Signal in the MATLAB workspace (and
associated signal in the Simulink model), define a canlib.Signal object
instead.

® There is no need to set the RTWInfo.StorageClass property of the
canlib.Signal object. By default, the storage class is set to Custom.

® You should enter data in the other fields of the canlib.Signal object in the
same way you would do for a Simulink.Signal object.

Note In order to use the canlib.Signal objects, the model must contain a
CAN Calibration Protocol block. See CAN Calibration Protocol (MPC555).

During code generation, the Target Support Package FM5 product
automatically determines how to configure the DAQ lists in the generated
code. For each distinct sample rate (of the set of canlib.Signal objects
assigned by the user) one DAQ list in the model is created. The CCP DAQ
List Object Descriptor Tables (ODTSs) are shared equally between the created
DAQ lists.

The sample rates of the canlib.Signal objects are mapped to CCP event
channels in an extra file, DAQ_LIST_EVENT_MAPPINGS, that is generated in the
build directory. This shows how to assign event channels to MEASUREMENT
signals in a calibration package.

The event channels periodically transmit events that are used to trigger the
sending of DAQ data to the host. By assigning event channels as defined in
DAQ_LIST EVENT_MAPPINGS, consistent and efficient transmission of DAQ
data is achieved.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages” on page 5-9) to assign an event channel and data to the
available DAQ lists using CCP commands, and to interpret the synchronous
response.

It is the responsibility of the user to make sure the calibration tool is set

up correctly and that the event channels assigned to MEASUREMENT signals
correspond to those defined in the file DAQ_LIST_EVENT_MAPPINGS.

2-45

2 Generating Stand-Alone Real-Time Applications

HTML Code Profile (RAM/ROM) Report

The Target Support Package™ FM5 product supports an extended version of
the Real-Time Workshop® Embedded Coder™ HTML code generation report.

For instructions, see “HTML Code Analysis (RAM/ROM) Report” on page

3-28. You can generate reports for the real-time target, processor-in-the-loop
(PIL) target and algorithm export (AE) target.

2-46

Execution Profiling

Execution Profiling

In this section...

“Overview of Execution Profiling” on page 2-47

“The Profiling Command” on page 2-48

“Execution Profiling Definitions” on page 2-50

“MPC5xx Options for Execution Profiling” on page 2-51
“Interpreting the Execution Profiling Graphic” on page 2-53

“Enabling Execution Profiling for Device Driver Interrupt Service Routines”
on page 2-55

Overview of Execution Profiling

The Target Support Package™ FMS5 product provides a set of utilities for
recording, uploading and analyzing execution profile data for timer-based
tasks and asynchronous Interrupt Service Routines (ISRs). With these
utilities, you can

® Generate a graphical display that shows when timer-based tasks and
interrupt service routines are activated, preempted, resumed and
completed.

® Generate a report with information on

= Maximum number of overruns for each timer-based task since model
execution began

= Maximum turnaround time for each timer-based task since model
execution began

= Analysis of profiling data for timer-based tasks and asynchronous
interrupts over a period of time

You can use the demo model mpc555rt_multitasking to see an example.
This demo model illustrates both execution profiling and the preemptive
multitasking scheduler with configurable overrun handling. For instructions,
click the link MPC555 Multitasking Demo.

2-47

2 Generating Stand-Alone Real-Time Applications

2-48

To perform execution-profiling analysis on a model, you must perform the
following steps:

1 Depending on whether you are using serial or CAN, place a copy of the
appropriate execution profiling block in your model (MPC555 Execution
Profiling via SCI1 or MPC555 Execution Profiling via CAN A).

2 Connect a serial or CAN cable between the target processor and your host
PC.

3 Check the box to enable Execution profiling in the Configuration
Parameters dialog box. See “MPC5xx Options for Execution Profiling”
on page 2-51.

4 Build, download and run the model.

5 Initiate execution profiling by running the command profile mpc555. See
below for more information on the profiling command.

Two forms of execution profiling are provided:

1 The worst-case values for task turnaround times and number of task
overruns since model execution began are updated whenever a previous
worst-case value is exceeded.

2 A snapshot of task and ISR activity may be recorded over a period of time;
the length of this period depends on how much memory is available to
log the data.

Note You need additional steps if device drivers use interrupt service routines
(may include CAN, TPU, and QSPI). See “Enabling Execution Profiling for
Device Driver Interrupt Service Routines” on page 2-55. If this is not done,
then no profiling information will be recorded.

The Profiling Command

Use the profiling command as follows:

profile_mpc555(connection)

Execution Profiling

Specify your connection as 'can' or 'serial’, to collect data via a CAN or
serial connection between the target and the host computer. Make sure the
model includes the appropriate MPC5xx execution profiling block (CAN or
SCI1), to provide an interface between the target-side profiling engine and the
host-side computer from which this command is run.

PROFDATA = profile mpc555(connection) collects and displays execution
profiling data from a MPCbxx target microcontroller that is running a
suitably configured application generated by the Target Support Package
FM5 product. PROFDATA contains the execution profiling data in the format
documented by exprofile unpack.

The data collected is unpacked then displayed in a summary HTML report
and as a MATLAB® graphic.

To use the serial connection, the MPC5xx board must be connected via a serial
cable to one of the host computer’s serial ports. This function defaults to port
SCI1 on the MPC5xx and port COM1 on the host computer. If the 'BitRate’
argument is not provided, the default of 57600 baud is used.

PROFDATA = PROFILE_mpc555('serial', 'SerialPort',serialport)

sets the serial port to the specified serialport, which should be one of COM1,
COM2, etc.

Optionally, you can specify the bit rate as follows:

PROFDATA = PROFILE_mpc555('serial', 'BitRate', bitrate)

This specification sets the bitrate for serial connection to the target. bitrate
must be the same as the bit rate specified for the application that is running
on the target.

Alternatively, you can set the bitrate for the serial connection to the target
automatically as follows:

profdata = profile_mpc555('serial', 'ModelName', modelname)

This specification automatically sets the bit rate by analyzing modelname
and extracting the correct serial connection bit rate setting from the model.

2-49

2 Generating Stand-Alone Real-Time Applications

2-50

modelname should be set to the name of a model which is currently open and
running on the target.

To use the CAN connection, you must have suitable CAN hardware installed.
If no Application Channel is specified, this function will use the channel
'"MATLAB 1'. The bit rate is a property of the Application Channel; to change
the bit rate, you must use a different Application Channel, or change the bit
rate by running the Vector Informatik configuration utility. To run this utility,
make sure that vcanconf.exe is on your System Path, then type vcanconf
from a Windows® command prompt.

You can specify the Application Channel as follows:
profdata = profile_mpc555('can', 'CANChannel', canchannel)

canchannel specifies the Vector Informatik CAN Application Channel, and
must be of the form 'MATLAB 1', 'MATLAB 2' etc.

Execution Profiling Definitions

Task turnaround time
the elapsed time between start and finish of a task. If the task is not
preempted then the task turnaround time is equal to the task execution
time.

Task execution time
that part of the time between task start and finish when the task is
actually running and not preempted by another task. Note that the task
execution time cannot be measured directly, but is inferred from the task
start and finish time and the intervening periods during which it was
preempted by another task. Note that, in performing these calculations,
no account is taken of processor time consumed by the scheduler while
switching tasks: this means that, in cases where preemption has
occurred, the reported task execution times will overestimate the true
values.

Task overruns
occur when a timer task does not complete before that same task is
next scheduled to run. Depending on how the real-time scheduler
is configured, a task overrun may be handled as a real-time failure.
Alternatively, a small number of concurrent task overruns may be

Execution Profiling

allowed in order to accommodate cases where a task occasionally takes
longer than normal to complete.

See also “Interpreting the Execution Profiling Graphic” on page 2-53.

The Execution Profiling Block

See the Block Reference section MPC555 Execution Profiling via SCI1 or
MPC555 Execution Profiling via CAN A.

MPC5xx Options for Execution Profiling

You can see these options on the ET MPC5xx real-time options (2) section
(under Real-Time Workshop in the tree) of the Configuration Parameters
dialog box.

M aximun number af concurrent base-rate overnmins: |5

Masimunm nurnber of concurrent sub-rate overuns: I‘I|

[v Ewecution prafiling

Murnber of data points: |5EID

Execution profiling
If this option is checked then the generated code for the model will be
instrumented with function calls at the beginning and end of each task
or ISR to be profiled. These function calls read a timer (on MPC555 it is
the decrementer timer) and log this reading along with a task identifier.

When code for the model is generated, these functions will update
data on the worst-case turnaround time for each timer-based task as
well as the worst-case number of concurrent task overruns, whenever
a previous worst case value is exceeded. Additionally, when a trigger
is provided, data will be logged over a period of time to record all task
start and task finish times. The trigger signal can be supplied by the
execution profiling blocks. See MPC555 Execution Profiling via SCI1
and MPC555 Execution Profiling via CAN A.

Number of data points
When a snapshot of task and ISR activity is logged this data is stored
in memory that is statically allocated at build time. Each data point

2-51

2 Generating Stand-Alone Real-Time Applications

2-52

requires 8 bytes on the MPC555. The larger the number of data points
to be stored, the more RAM that must be reserved for this purpose.
At the end of a logging run, the data must be uploaded to the host
computer for analysis; this is typically achieved by using the execution
profiling blocks.

Overrun Options

These options configure the allowable number of task overruns. You can see
these options on the ET MPC5xx real-time options (2) section (under
Real-Time Workshop in the tree) of the Configuration Parameters dialog.

M aximun number af concurrent base-rate overnmins: |5

Masimunm nurnber of concurrent sub-rate overuns: I‘I|

[v Ewecution prafiling

Murnber of data points: |5EID

You can use the options Maximum number of concurrent base-rate
overruns and Maximum number of concurrent sub-rate overruns to
configure the behavior of the scheduler when any of the timer based tasks
do not complete within their allowed sample time. It is useful to allow task
overruns in the case where a task may occasionally take longer than usual
to complete (e.g. if extra processing is required when a special event occurs);
if the task overrun is only occasional then it is possible for the scheduler to
’catch up’ after the extra processing has been completed.

If the maximum number of concurrent overruns for any task is exceeded, this
is deemed to be a failure and the real-time application is stopped. This in turn
will result in a watchdog timer timeout and the processor will be reset.

As an example, if the base rate is 1 ms and the maximum number of
concurrent base-rate overruns is set to 5 then it is possible for the base rate
task to run for almost 6 ms before failure occurs. Once the overrun has
occurred, it is necessary for subsequent executions of the base rate to complete
in less than 1 ms in order that the lost time is recovered.

Execution Profiling

The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this

causes the numerical behavior in real-time to differ from the behavior in
simulation. To see an illustration of this effect try running the demo model
mpc555rt_multitasking. To disallow sub-rate overruns and ensure that this
effect does not occur, you should set Maximum number of concurrent
sub-rate overruns to zero.

Note If the option "Maximum number of concurrent sub-rate overruns" is set
to a value greater than zero, then the behavior of any Rate-Transition blocks
may be affected. Specifically, if the model contains a Rate Transition block
where the option "Ensure deterministic data transfer (maximum delay)" is
selected, then this setting may not be honored.

Interpreting the Execution Profiling Graphic

Dark shaded areas show the region where a task is executing. Light shaded
areas show the region where a task is preempted by a higher priority task
or ISR. Triangles indicate the beginning of a task. An example is shown
following.

2-53

2 Generating Stand-Alone Real-Time Applications

File Edt “iew Inzert Tools Desktop Window Help]

PEH&| k QRQAM® €08 80

Task Execution Profile

Sub-Rate 2

Sub-Rate 1 Fpf-

Base-Rate

0 po2 004 006 OO 01 012 014 016 018 02
Tirme in seconds

Zoom in to see the details of tasks executing and being preempted, as shown
in the following example.

2-54

Execution Profiling

File Edit “iews Insert Toolz Desktop Window Help

S =EIEEN =T

Task Execution Profile

Sub-Rate 2}
Sub-Hate 1

Base-Rate

EIDQB EIDQQ : E|1EI1 E|1E|2 E|1E|3 E|1E|4 E|1E|5
Tirme In seconds

Enabling Execution Profiling for Device Driver

Interrupt Service Routines

By default, execution profiling is not enabled for device driver interrupt
service routines. Device drivers that may use interrupt service routines
include CAN, TPU and QSPI device drivers.

You can enable execution profiling for device driver interrupt service routines.

To do this, you must rebuild the device drivers libraries with a macro
PROFILING_ENABLED defined. Follow these steps:

1 Remove the previously built device driver code using one of the following

methods.

2-55

2 Generating Stand-Alone Real-Time Applications

2-56

a Run the command:

mpc555_build_drivers('clean')

b Delete the contents (compiled object code) of the directory

matlab\toolbox\rtw\targets\mpc555dk\drivers\src\libsrc\standard\src\bin\COMPILER\XXX

where COMPILER is one of DIAB or CODE_WARRIOR and XXX is the MPC5xx
variant you are using.

The second approach will result in a faster rebuild in the next step.

2 Run the command:

mpc555_build_drivers(BUILD OPTION, 'ProfileDeviceDrivers', 'on')

Set BUILD OPTION to one of the options 'speed', 'size', or 'debug"'.

When rebuilding the driver library using the command
mpc555 build _drivers, the compiler and compiler switches used

are taken from the currently selected compiler configuration in the Target
Preferences.

Summary of the Real-Time Target

Summary of the Real-Time Target

In this section...

“Code Generation Options” on page 2-57

“Requirements and Restrictions” on page 2-59

Code Generation Options

The real-time target is an extension of the Real-Time Workshop® Embedded
Coder™ embedded real-time (ERT) target configuration. The real-time target
inherits the code generation options of the ERT target, as well as the general
code generation options of the Real-Time Workshop® product. These options
are available under Real-Time Workshop, in the tree on the Configuration
Parameters dialog box; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop documentation.

Some code generation options of the ERT target are not relevant to the
real-time target, and are either unsupported, or restricted in their operation.
See “Requirements and Restrictions” on page 2-59 for details.

Target-Specific Options

The real-time target has several target-specific code generation options. To
view or change the setting of these options, select the ET MPC5xx real-time
options(1) section in the Configuration Parameters dialog. This figure
shows the options at their default settings.

Optimize compiler for I speed
Compiler optimization switches I' =0
T arget memorny model I Rihd

Build action I Mone

W Usze prebuilt B T4 libranies

* Optimize compiler for — Select speed, size, debug, or custom.

This option controls compiler optimization switches used during the build
process. The exact effect of the optimization switches depends on whether

2-57

2 Generating Stand-Alone Real-Time Applications

2-58

you are using the Wind River or CodeWarrior® compiler. You can optimize
for performance by choosing the speed, size, or debug options, or define
your own (the custom option). You can edit these preferences here in the
Compiler optimization switches edit box if you want to apply changes
to the current model (Optimize compiler for will change to custom). You
can also edit the defaults for these settings in the Target Preferences
dialog if you want to apply these changes to several models. See “Compiler
Optimization Switches” on page 1-23 for more information.

Target memory model Select either FLASH or RAM.

If you select the FLASH option, files in a format suitable for downloading
into the MPC555 on-chip flash memory are written. If you select the RAM
option, files in a format suitable for downloading into RAM are generated.

In both cases these two files are generated, with this naming convention:
= model flash.s19 or model ram.s19 — code only, for CAN download

= model flash.elf or model ram.elf — for BDM download, containing
code and optional debugging symbols if you choose a debug build in the
Optimize compiler for settings

Build action
= None — code generation only.

= Launch_Download Control Panel — on completion of code generation
the Download Control Panel utility is opened.

= Run_via BDM — on completion of code generation download over BDM
connection automatically starts and on completion the code is run.

= Debug via BDM — on completion of code generation download over BDM
connection automatically starts. When the download is complete the code
stops at the first line in debug mode, so you can step through the code.

Use prebuilt RTW libraries

This check box option (selected by default) determines whether prebuilt
RTW libraries, compiled with default compiler switches, are linked
against during compilation of the generated code. When this option is not
selected, the source modules that comprise these libraries will be compiled
individually in the model build directory, using the currently selected
compiler switches.

Summary of the Real-Time Target

Using prebuilt RTW libraries saves a considerable amount of time during
the build process.

Requirements and Restrictions

MPC555 Resource Configuration Block Required

To generate code from a model using the Target Support Package™ FM5
real-time target, an MPC555 Resource Configuration block must be included
in the model. The MPC555 Resource Configuration block is required even for
models that do not contain any MPC555 device driver blocks.

Note When using device driver blocks from the Target Support Package FM5
libraries in conjunction with the MPC555 Resource Configuration block, do
not disable or break library links on the driver blocks. If library links are
disabled or broken, the MPC555 Resource Configuration block will operate
incorrectly. See MPC555 Resource Configuration for further information.

Model Reference and Driver Blocks

Referenced sub-models that contain driver blocks (including the MPC555
Resource Configuration block) cause build failures. All Target Support
Package FM5 driver blocks must be placed in the top level model. It is not
possible to include driver blocks in any of the referenced sub-models.

Restricted Code Generation Options

Certain ERT code generation options are not supported by the real-time
target. If these options are selected, the real-time target either ignores the
option or issues an error message during the build process. Real-Time Target
Restricted Code Generation Options on page 2-59 summarizes these restricted
options.

Real-Time Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds

2-59

2 Generating Stand-Alone Real-Time Applications

2-60

Real-Time Target Restricted Code Generation Options (Continued)

Option

Create Simulink
(S-function) block

External mode

Generate an example
main program

Generate reusable
code

Restriction

Error if selected; build process terminates

Error if selected; build process terminates

This option should not be selected for the
real-time target. The real-time target supplies a
target-specific main program, mpc555dk_main.c.
Ignored if selected; build proceeds with a warning.

Error if selected; build process terminates

Performance Tips

Performance Tips

In this section...

“Run the Model Advisor” on page 2-61

“Increase the System Clock Beyond the Default 20 MHz” on page 2-61
“Use Flash Instead of RAM” on page 2-61

“TouCAN Interrupt Generator Block Performance Tips” on page 2-62

“Optimized Target Function Library” on page 2-62

Run the Model Advisor

Following the suggestions in the Model Advisor report may result in faster
on-target execution.

Increase the System Clock Beyond the Default 20
MHz

The default system clock frequency is 20 MHz. For higher performance, you
should consider increasing the system clock frequency up to 40 MHz, which is
the maximum for the MPC555 device. Other processor variants may support
higher System Clock Frequencies depending on your development board.
Please consult your development board documentation for details.

For more information, see:

¢ System Clock and Related Parameters for information on how to change
system clock parameters.

e Switch Target Configuration; this is a utility block you can use to apply
some predefined configurations.

Use Flash Instead of RAM

Configure the model to run from internal Flash (rather than external RAM)
because this has faster memory access. See “Downloading Application Code”
on page 2-22.

2-61

2 Generating Stand-Alone Real-Time Applications

2-62

TouCAN Interrupt Generator Block Performance Tips

When using the TouCAN Interrupt Generator block, you can improve
performance as follows:

¢ Disable Use floating point in the TouCAN Interrupt Generator (if
possible). This will save significant time during ISR context switches (of
which there may be many, depending on the application).

e Minimize the code that runs in the context of the ISR. Try and move as
much code out of the ISR (function-call subsystem) as possible to speed up
individual ISRs. This should allow an increase in the rate at which CAN
messages can be received on that buffer.

Optimized Target Function Library

If your model contains floating-point mathematical function blocks (e.g.,
trigonometric functions, log functions), then you should use target optimized
function libraries. Select the Target Support Package FM5 (ISO) option for
the Target function library (on the Real-Time Workshop > Interface
pane of the Configuration Parameters dialog box) to use the CodeWarrior®

or Diab ISO C function library. This generates calls to the Freescale™
CodeWarrior or WindRiver Diab ISO/IEC 9899:1999 math library for
floating-point functions as appropriate.

When you create new models with the mpc555rt.tlc, mpc555rt_grt.tlc
or mpc555exp.tlc System target file, the Target Support Package FM5
(IS0) is automatically selected for the Target function library setting.

PIL Cosimulation

This section includes the following topics:

Overview of PIL Cosimulation
(p. 3-3)

Tutorial 1: Building and Running a

PIL Cosimulation (p. 3-6)

Tutorial 2: Using the Demo Model in
Simulation (p. 3-19)

PIL Target Summary (p. 3-20)

Algorithm Export Target (p. 3-26)

Basic concepts you will need to know
to use cosimulation effectively in
your design process.

A hands-on, step-by-step
introduction to cosimulation with the
PIL target, using a plant/controller
demonstration model.

In addition to building code suitable
for cosimulation, the PIL target
builds components you can use in
closed-loop and software-in-the-loop
(SIL) simulations. This tutorial
shows you how to use these
components.

Summary of code generation options
of the PIL target; restrictions and
limitations of the PIL target.

The Algorithm Export (AE) target
generates only the code that
implements the algorithm of your
model or subsystem. This is useful
for code analysis and interfacing to
hand-written or legacy code.

3 PIL Cosimulation

3-2

HTML Code Analysis (RAM/ROM)
Report (p. 3-28)

Algorithm Export Target Summary
(p. 3-31)

This section describes the extended
HTML code generation report.

Summary of code generation options
and restrictions for algorithm export.

Overview of PIL Cosimulation

Overview of PIL Cosimulation

In this section...

“What Is PIL Cosimulation?” on page 3-3
“Why Use Cosimulation?” on page 3-3

“How Cosimulation Works” on page 3-4

What Is PIL Cosimulation?

The Target Support Package™ FM5 product supports processor-in-the-loop
(PIL) cosimulation, a technique that is designed to help you evaluate how well
a candidate control system operates on the actual target processor selected for

the application.

The Target Support Package FM5 (processor-in-the-loop) target is an extended
version of the embedded real-time (ERT) target configuration, designed
specifically for PIL cosimulation. We refer to this configuration as the PIL

target.

Why Use Cosimulation?

PIL cosimulation is particularly useful for simulating, testing and validating
a controller algorithm in a system comprising a plant and a controller. In

classic closed-loop simulation, the Simulink® and Stateflow® products model
such a system as two subsystems and the signals transmitted between them,

as shown in this block diagram.

le Outt

Inz Out

¥

In1 Outl

Inz Out

In3 Out

|

In2 Out2
Plant

Contraller

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design

3 PIL Cosimulation

progresses, you can use Simulink external mode with standard Real-Time
Workshop® targets (such as GRT or ERT) to help you model the control system
separately from the plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware. When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. Once these
adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term cosimulation reflects a
division of labor in which Simulink models the plant, while code generated
from the controller subsystem runs on the actual target hardware. In a PIL
cosimulation, the target processor participates fully in the simulation loop —
hence the term processor-in-the-loop.

How Cosimulation Works

This figure illustrates how the plant (P) and controller (C) components
interact in a PIL cosimulation

Overview of PIL Cosimulation

PIL Cosimulation

Model
_ step

Yout of plant

1 o —-

Controller
P C
o — .

Yout of controller

Simulink MPC555
(host) Hardware
(target)

In a PIL cosimulation, Real-Time Workshop® Embedded Coder™ software
generates efficient code for the control system. This code runs (in simulated
time) on a target board using the intended microcontroller. The plant model
remains in Simulink without the use of code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target board
via a communications link. When the target processor receives signals from
the plant model, it executes the controller code for one sample step. The
controller returns its output signals (Yout of the controller) computed during
this step to Simulink, via the same communications link. At this point one
sample cycle of the simulation is complete and the plant model proceeds to the
next sample interval. The process repeats and the simulation progresses.

To learn about PIL cosimulation though hands-on experience, see “Tutorial 1:
Building and Running a PIL Cosimulation” on page 3-6.

3-5

3 PIL Cosimulation

Tutorial 1: Building and Running a PIL Cosimulation

In this section...

“Before You Begin” on page 3-6

“Hardware Connections” on page 3-6

“The Demo Model” on page 3-7

“Setting Up the Model” on page 3-10

“Building PIL and Simulation Components” on page 3-12
“Using the Demo Model In a PIL Cosimulation” on page 3-15

“Modifying the Controller Subsystem” on page 3-18

Before You Begin

In this tutorial, you will use a subsystem in a Simulink® model as a component
in simulations on your host computer, and also in a PIL cosimulation running
on your phyCORE-MPC555 board.

Before working with this tutorial, you should read and follow the procedures
in “Setting Up and Verifying Your Installation” on page 1-17. Make sure that
the target preferences are set up appropriately for your development system
(CodeWarrior® or Wind River) as described in “Setting Target Preferences”
on page 1-18.

Hardware Connections

The PIL target requires that you have a serial cable connection. You can also
use serial and CAN, or serial with a BDM connection.

Serial cable is required for host/target PIL communications whilst the model
is running, and downloads can occur over serial or CAN so the minimal
requirement is a single serial cable. BDM is not required but can be used if
desired.

We assume that you have made the following connection, as described
in the “Interfacing the phyCORE-MPC555 to a Host PC” section of the

3-6

Tutorial 1: Building and Running a PIL Cosimulation

phyCORE-MPC555 Quickstart Instructions manual: Host PC serial (COM1)
port to the RS232-1 (P2) connector on the phyCORE-MPC555 board.

The Demo Model

We have provided a demo model for your use. The Fault-Tolerant Fuel Control
System model, shown in Fault-Tolerant Fuel Control System Model on page
3-7, consists of a plant model with a controller subsystem, the Fuel Rate
Controller subsystem.

Fault-Tolerant Fuel Control System

throttle zenzor
mf\ - engine speed ol_out
throttle
command

angine

Mominal throttle angle hAsP
Speed speed
-
00 o - speed sensor fuel airffuel ratio
High Speed

(rad.JSec) engine

gas
dynamics

)
EG0 sensor

[
L

Fuel Rate Contraller 1

Metered Fuel
AP zenzor airtfuel

mizxture ratio

Fault-Tolerant Fuel Control System Model

In the following sections, you will use the demo model and the PIL target to
generate the following:

¢ PIL code to run on the target board. The PIL target automatically invokes
the appropriate cross-development tools to compile, link, and (optionally)
download and run a target executable.

¢ A library containing

3 PIL Cosimulation

The original Fuel Rate Controller subsystem block for use in
simulation.

An S-function wrapper block, generated by Real-Time Workshop®
Embedded Coder™ software, that implements the Fuel Rate
Controller subsystem for use in software-in-the-loop (SIL) simulation.

A subsystem block that implements the Fuel Rate Controller
subsystem on the host side during cosimulation. This subsystem
communicates with generated PIL code running on the target board.

A master configurable subsystem block that represents the above three
components. You will plug this block into a plant model and select each
of the three components in turn for use in a simulation.

This figure shows a library generated by the PIL target.

Tutorial 1: Building and Running a PIL Cosimulation

W/ Library: Fuel_lib =3

File Edit iew Help

D& iR RER T

= Generated Proceszorin-the-Loop Simulink Librany ==

Real-Time Wodshop 5.1
Generated on: 20041214 15:03:54

Qriginal subsystem:
mpcSSS_fuelsysfFuel Rate Controller

Template
throttle

fuel rate

engine speed

EGD
failures

(L

Fugl Rate Controller

Replace the original subsystem in the model
with the configurable subswstemn from this librany.

Replace the configurable subsystem in the model
with the copy of the ariginal subsystem in this librany.

SIL FIL
Fuel Rate Controller Fuel Rate Controller Fuel Rate Controller
[N (FIL)
Ready |Lo0% [Locked A

Once you start the build process, there is almost no manual intervention
required to build all these components.

3-9

3 PIL Cosimulation

3-10

After building the components, you will use them in normal simulation,
SIL simulation, and PIL cosimulation. You will monitor the results of each
simulation via the Scope blocks in the model.

Setting Up the Model

In this section you will make a local copy of the demo model and configure the
model as required by this exercise:

1 Open the demo model by clicking the link or typing at the command line:

mpc555_fuelsys

Alternatively you can access the whole MPC555 demo suite by selecting
Start > Demos and browsing under Links and Targets, or Start > Links
and Targets > Target Support Package FM5 > Demos. The model

is located in the directory

matlabroot/toolbox/rtw/targets/mpc555dk/mpc555demos.

The path matlabroot should be the location where MATLAB® is installed.

2 Save a copy of the demo model, mpc555 fuelsys.mdl to your working
directory.

Next, check that the model is correctly configured for use with the Target
Support Package™ FMS5 product.

1 Click on the Fuel Rate Controller subsystem, then choose
Configuration Parameters from the Simulation menu. The
Configuration Parameters dialog opens.

2 Select Real-Time Workshop in the tree.

3 Observe the RTW system target file setting on the General tab. The
target configuration should be as shown in this figure.

Tutorial 1: Building and Running a PIL Cosimulation

#% Configuration Parameters: mpc555_fuelsys,/Configuration (Active)

Select:

- Salver

- [ata Import/E sport

- Optimization

[=- Diagnostics

b Sample Time

Data Walidity

Type Corversion
Connectivity
Compatibility

i Model Referencing

-~ Hardware |mplementation
- bl odel Referencing
[=-Real-Time Warkzhop

- R eport

- Comments

- Sumbole

- Custom Code

- Debug

- |nterface

- Code Style

- Templates

- [ata Placement

- Data Type Replace...
- Memory Sections

-~ ET MPChs (proces....

— Target zelection

System target file: I mpch55piltc

Browse... |

Language: | C

Dezcription: T arget Support Package FM5 [processor-in-the-loop]

I

— Build proces

TLC oplions:l

 akefile configuration

¥ Generate makefils

tdake command: I make_rtw

Template makefils: | ripcB5Spil_default_trf

— Custom storage cla:

[lgnore custom storage claszes

™ Generate code only

Build |

=

LCancel | Help | Apply |

4 To see how to change target configuration settings, click the Browse
button to open the System Target File Browser, and observe the available
Target Support Package FM5 system target files — for algorithm
export, processor-in-the-loop, and real-time target. Leave the selected file
at mpc555pil.tlc. Click Cancel to close the Browser and return to the

Real-Time Workshop pane.

5 SelectET MPC5xx (processor-in-the-loop) options in the tree.

Optimize compiler for I speed

Compiler optimization switches I' -opt speed '

Build action: | Mone

¥ Use prebuilt [static] R TW Libraries

3-11

3 PIL Cosimulation

3-12

6 Select Launch_Download Control Panel from the Build action
drop-down menu. This option automatically invokes the appropriate
downloading utility.

7 Click Apply. Then close the Configuration Parameters dialog box. If
needed, save the model to preserve any changes you have made.

Building PIL and Simulation Components

In this section, you will build a library of simulation, SIL, and PIL components
from the Fuel Rate Controller subsystem:

1 Right-click on the Fuel Rate Controller subsystem. A context menu
appears. Select Build Subsystem from the Real-Time Workshop
submenu of the context menu.

2 The Build code for Subsystem window opens. This window displays
information about each variable (or data object) that is referenced as a
block parameter in the subsystem. The window lets you inline or set the
storage class of individual parameters. We will not be concerned with
these features in this exercise. Click the Build button to continue the
code generation and build process.

<) Build code for Subsystem: fuel rate controller = |EI|1|
rPicktunable parameters
Variable Mame Class StorageClass

double Inlined hd |2
double Inlined hd
double Inlined Il
double Inlined hd
double Inlined hd
uints Inlined hd LI

rBlocks using selected variable

Block Parent
Build Cancel Help |
Status
’7 Select tunahle parameters and click Build ‘

Tutorial 1: Building and Running a PIL Cosimulation

3 The build process displays status messages in the MATLAB command
window. Intermediate Simulink windows are displayed as the build process
creates various components.

4 When the code generation process completes, the PIL target automates the
process of compiling, downloading, and executing the generated PIL code
that is to run on the target hardware. To accomplish this, the PIL target
launches your cross-development system (Wind River or CodeWarrior),
compiles and makes the executable, and invokes the Download Control
Panel to download the code to the target. Click Start Download in the
Download Control Panel to complete the process.

5 At this point, the generated program is running on the target hardware and
waiting for communication to be established with Simulink on the host PC.

6 The build process has created and opened a library named Fuel 1ib, as
shown in this figure.

3-13

3 PIL Cosimulation

W Library: Fuel_ib M=)

File Edit View Formal Help

DFEHS| sB2R |92 REE G

= Generated Proceszorin-the-Loop Simulink Libran °°

Feal-Time Wakshap 5.1
Fenerated on: 2004-12-14 12:03:54

Original subsystem:
mpeS8S_fuelsys/Fuel Rate Contraller

Termplate
throttle

fuel rate

engine speed

EGO
failures

hsp

Fuel Rate Controller

Replace the original subsystemn in the model
with the configurable subsystem from thiz librany.

Feplace the configurable subsystem in the madal
with the copy of the original subsystemn in this librany.

SIL FIL
Fuel Rate Contraller Fuel Rate Contraller Fuel Rate Controller
(51 (PIL)
Ready |100% |Locked o

3-14

Tutorial 1: Building and Running a PIL Cosimulation

The library contains

® A copy of the original Fuel Rate Controller subsystem.

¢ A Real-Time Workshop Embedded Coder S-function, labeled Fuel Rate
Controller (SIL).

® A subsystem block that communicates with generated PIL code running
on the target board during cosimulation, labeled Fuel Rate Controller
(PIL).

® A master configurable subsystem block referencing the other three blocks.
The default block choice for this subsystem is the original Fuel Rate
Controller subsystem.

The configurable subsystem, when plugged into the model, lets you choose
which of the three library components will perform the controller functions in
the model. We will use the configurable subsystem in the following sections.

The library window also contains the following controls:
® A button that lets you replace the original (generating) subsystem in the

model with the generated configurable subsystem.

® A button that lets you do the inverse, i.e., remove the configurable
subsystem from the model from the original model and replace it with the
original (generating) subsystem from the library.

The library window documents the name of the original model/subsystem
from which the library was generated,

Using the Demo Model In a PIL Cosimulation

In this section, we will plug the configurable subsystem into the demo model,
select the PIL component, and use it in a PIL cosimulation:

1 Click on the Fuel_lib library window to activate it. Double-click on the

button labeled Replace the original subsystem in the model with the
configurable subsystem from this library.

3-15

3 PIL Cosimulation

2 The mpc555pil fuelsys model window is now the active window. The
original Fuel Rate Controller subsystem has been deleted from the
model. It has been replaced by the configurable subsystem from the
Fuel 1ib library. The configurable subsystem is automatically connected
to the same signals that the original Fuel Rate Controller subsystem
was connected to.

Note It is important to be aware that the insertion of the configurable
subsystem into the containing model establishes a link between the
model, mpc555pil fuelsys, and the library, Fuel 1ib. The library has
information about the model and subsystem from which it was generated.
The model, in turn, has information about the library from which the
configurable subsystem comes. This linkage is based on the names of the
library and the model, and will be broken if either is renamed. To avoid
errors, treat the model and library as a single unit, and do not rename
either.

3 Save the model.

4 Right-click on the configurable subsystem in the model. A context menu
appears. Select the Block choice menu item and observe the block choice
submenu. This figure shows the default block choice selection.

 fuel rate contraoller

fuel rate controller {SIL}
fuel rate controller {PILY

5 From the Block choice submenu of the context menu, select Fuel Rate
Controller (PIL).

6 Open the model’s two Scope blocks, if they are not already opened.

7 Make sure that Simulink is in Normal mode. For more information, see the
Simulink documentation on Simulation Modes.

8 You are now ready to run the cosimulation. To start the cosimulation, click
the Start simulation button in the Simulink toolbar.

3-16

Tutorial 1: Building and Running a PIL Cosimulation

The target system now starts executing the controller code. Observe that
the output signals computed on the target are displayed on the scopes.
The updating of the Scope blocks is slow, relative to a normal simulation,
because data is transmitted over the serial line on every model step.

9 When the simulation completes, the signals displayed on the scopes
should appear as shown in Signals Displayed at End of Simulation or
Cosimulation on page 3-17.

=10l =] <) air/fuel mixture ratio
lemiceo aBRB ®E EETEY I I

Signals Displayed at End of Simulation or Cosimulation

10 When the cosimulation has completed, or has stopped or paused, the target
code enters a wait state until it receives a command to start (or resume)
from the host. Restart the cosimulation by clicking the Start simulation
button again. You can start, stop, restart, pause, or continue a cosimulation
exactly as you would a normal simulation. Try each of these operations
a few times.

Once your target has been reset, your application will be lost from memory. In
this case, you can download the application again by using the Download
Control Panel from the Start menu. Select the *.s19 file. In this case it
will be fuel_ram.s19.

See “Build Process Files and Directories” on page 3-22 for information on the
files and directories created by the build process.

3-17

3 PIL Cosimulation

Modifying the Controller Subsystem

Typically during algorithm development you will wish to make modifications
to the Controller Subsystem. You can apply your modifications to the
Controller Subsystem by changing the original model.

Note that in the mpc555 fuelsys demo model the Controller Subsystem is
actually a Simulink library block from the mpc555 fuelsys project library,
so making modifications may require modification of the library block.

Once you have completed making your modifications to the Controller

Subsystem you can go back to step “Building PIL and Simulation Components”
in this tutorial to rebuild and download the Controller Subsystem for PIL.

3-18

Tutorial 2: Using the Demo Model in Simulation

Tutorial 2: Using the Demo Model in Simulation

In this section...

“Closed-Loop Simulation” on page 3-19

“SIL Simulation” on page 3-19

Closed-Loop Simulation

In this section, you will continue to use the configurable subsystem in the
demo model, using it first in a normal closed-loop simulation and then in a
SIL simulation.

1 Right-click on the configurable subsystem and select Fuel Rate
Controller from the Block choice submenu of the context menu. This
selects the controller subsystem that was used in the original model.

2 Open the Scope blocks and start the simulation. When the simulation
completes (simulation time is set to 8 seconds), the signals displayed on
the scopes should appear identical to those displayed during the previous
cosimulation (see Signals Displayed at End of Simulation or Cosimulation
on page 3-17).

SIL Simulation

1 Right-click on the configurable subsystem and select Fuel Rate
Controller (SIL) from the Block choice submenu of the context menu.

Selecting this option directs the Simulink® application to call a generated
wrapper S-function that implements the controller algorithm in highly
efficient Real-Time Workshop® Embedded Coder™ generated code. You can
now run a SIL simulation.

2 Start the simulation. You will notice that the simulation completes much
more quickly, due to the efficiency of the generated code. Also, observe that
the generated code displays results, on the scopes, that are identical to the
previous simulation and cosimulation (see Signals Displayed at End of
Simulation or Cosimulation on page 3-17).

3-19

3 PIL Cosimulation

PIL Target Summary

3-20

In this section...

“Code Generation Options” on page 3-20
“Build Process Files and Directories” on page 3-22

“Restrictions” on page 3-23

Code Generation Options

The PIL target is an extension of the Real-Time Workshop® Embedded
Coder™ embedded real-time (ERT) target configuration. The PIL target
inherits the code generation options of the ERT target, as well as the general
code generation options of the Real-Time Workshop® product. These options
are available under Real-Time Workshop, in the tree on the Configuration
Parameters dialog box; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the PIL
target, and are either unsupported, or restricted in their operation, by the PIL
target. See “Restrictions” on page 3-23 for details.

Target-Specific Options

The PIL target has four target-specific code generation options: Optimize
compiler for, Compiler optimization switches, Build action and

Use prebuilt (static) RTW libraries. To view or change the setting of
these options, select ET MPC5xx (processor-in-the-loop) options under
Real-Time Workshop in the tree on the Configuration Parameters dialog.

Optimize compiler for I speed

Compiler optimization switches I' -opt speed '

Build action: | Mone

¥ Use prebuilt [static] R TW Libraries

PIL Target Summary

* Optimize compiler for — Select speed, size, debug, or custom.

This option controls compiler optimization switches used during the build
process. The exact effect of the optimization switches depends on whether
you are using the Wind River or CodeWarrior® compiler. You can optimize
for performance by choosing the speed, size, or debug options, or define
your own (the custom option). You can edit these preferences here in the
Compiler optimization switches edit box if you want to apply changes
to the current model (Optimize compiler for: will change to custom). You
can also edit the defaults for these settings in the Target Preferences
dialog if you want to apply these changes to several models. See “Compiler
Optimization Switches” on page 1-23 for more information.

¢ The Build action menu has two options that control what action the PIL
target takes after completing the code generation process:

= Launch_Download Control Panel: When this option is selected, the PIL
target automatically invokes the Download Control Panel. When you
click Start Download the PIL target downloads the generated code to
the target board and begins execution of the code.

Before using this option, make sure that the target preferences (Compiler
and Debugger paths) are set correctly.

= None: When this option is selected, the PIL target does not take any
action after code generation completes. To download and run your
application, you must do so manually, using your development tools.

= Run_via BDM — on completion of code generation download over BDM
connection automatically starts and on completion the code is run.

= Debug via BDM — on completion of code generation download over BDM
connection automatically starts. When the download is complete the code
stops at the first line in debug mode, so you can step through the code.

¢ Use prebuilt (static) RTW libraries

This check box option (selected by default) saves a considerable amount of
time during the build process, as the libraries do not need to be recompiled
every time.

Manual Download

Once a subsystem has been built using the PIL target, it is possible to use
the Download Control Panel to manually download the generated code to

3-21

3 PIL Cosimulation

3-22

the target without repeating the entire build process. To do this, use the
following procedure:

1 Select Start > Links and Targets > Target Support Package
FMS5 > Launch Download Control Panel.

2 Select the required *.s19 file, and click Start Download.

Build Process Files and Directories
The PIL target creates the following in your working directory:

® A build directory, containing generated source code, object files in their own
directory, and a makefile and other control files. The build directory also
may contain subdirectories used by Stateflow® software and by the HTML
code generation report generator (see “HTML Code Analysis (RAM/ROM)
Report” on page 3-28).

The naming convention for the build directory is source_mpc555pil,
where source is the first word of the generating subsystem or model. For
example, the Fuel Rate Controller subsystem used in the PIL tutorials
generates the build directory fuel mpc555pil.

® The generated library, source_lib.mdl, and the.mexw32 components that
are bound to the generated PIL and SIL blocks in the library. Note that
if you rebuild source_lib.mdl in the same working directory, a revision
number is appended to the source string. For example, building from the
Fuel Rate Controller subsystem used in the PIL tutorials generates
Fuel 1ib.mdl, fuel1_lib.mdl, fuel2_lib.mdl... fueln_lib.md1.

¢ Executable PIL code in a format suitable for downloading to the target and
execution by your development system (Wind River Systems SingleStep™
or CodeWarrior).

® Project files, debugging symbol files, link maps, and other files specific to
your development system (Wind River Systems SingleStep or CodeWarrior).

If you do not select the Launch_Download_Control Panel option when you
generate code (or if you want to rerun PIL code after it is built), you can use
the Download Control Panel to manually download and run the generated
executable. To do this, see “Manual Download” on page 3-21.

PIL Target Summary

Restrictions
Please note the following restrictions on the use of the PIL target:

® The PIL target does not support code generation from device driver blocks
from the Target Support Package™ FM5 block libraries. Do not include
device driver blocks in your PIL models. See mpc555 fuelsys project.mdl
for an example of PIL modeling. This example manages multi-model
modeling to deal with RT & PIL operation.

® Do not include To File blocks in your PIL models, they will cause the build
to fail.

® Self modifying blocks (such as the Resource Configuration block and other
blocks) that modify the PIL subsystem during simulation, may cause an
error during simulation of the generated Configurable Subsystem (in
original subsystem mode).

As a workaround it is possible to set the MaskSelfModifiable parameter of
the original subsystem in the generated PIL library. To do this select the
original subsystem in the generated PIL library with the mouse, and then
run the following command in the MATLAB® command prompt:

set_param (gcb, 'MaskSelfModifiable', 'on')

Note that we recommend not placing driver blocks (such as the Resource
Configuration block) inside the PIL subsystem.

¢ If you change the cross-compiler you use with the PIL target (from Wind
River to CodeWarrior or vice versa), you should rebuild your PIL models
in a clean directory, or delete all files from the models’ code generation
directories. The PIL build process expects to start with a clean directory,
or a directory created in the process of building with the same compiler.
Leftover components built by a different compiler cause errors.

¢ In a plant/controller simulation where the controller is built via the PIL
target, the plant model can contain any Simulink® blocks, including a
combination of continuous-time and discrete-time blocks. However, the
controller subsystem must not include any continuous-time blocks. This
is because PIL uses the Real-Time Workshop Embedded Coder S-function
Generation feature; this feature does not support continuous sample
times. However, note that, standard Real-Time Workshop Embedded

3-23

3 PIL Cosimulation

3-24

Coder code generation, as used by the MPC555 RT target, does support
continuous-time blocks.

The superseded version of the Vector CAN Configuration block should not
be placed inside a PIL subsystem. Instead, the model can be updated to use
the current Vector CAN Configuration block, which can be placed inside a
PIL subsystem.

Parameters with the following storage requirement are not supported
for PIL. If a model contains parameters where the storage class (e.g.,
custom storage class) of the data objects requires storage in the model.c
module, then "unresolved external symbol" link errors occur during the
processor-in-the-loop (PIL) build process.

Model directories must be located either an actual hard drive on your PC,
or a mapped drive. Do not use a UNC network path. If you run (simulate)
a model from a Universal Naming Convention (UNC) network directory
(such as \\Server\user\work), errors are produced.

Vectors are not supported at the PIL boundary.

Nonvirtual busses are not supported at the PIL subsystem boundary. PIL
only supports virtual buses at the PIL boundary. Note: A virtual bus at a
root level inport, with properties specified via a bus object, is treated as a
nonvirtual bus. To avoid an error, make the inport a virtual bus.

Certain ERT code generation options are not supported by the PIL target.
If these options are selected, the PIL target either ignores the option or
issues an error message during the build process. PIL Target Restricted
Code Generation Options on page 3-24 summarizes these restricted options.

PIL Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds
Generate ASAP2 file Ignored if selected; build process proceeds
External mode Error if selected; build process terminates

Generate an example This option should not be selected for the PIL
main program target.

PIL Target Summary

PIL Target Restricted Code Generation Options (Continued)

Option Restriction

Generate reusable Error if selected; build process terminates
code

Target function C89/C90(ANSI) is the default and is not
library configurable.

3-25

3 PIL Cosimulation

Algorithm Export Target

3-26

The Target Support Package™ FM5 Algorithm Export (AE) target is an

aid to code analysis and interfacing. The target generates only the code
that implements the algorithm of your model or subsystem, without any
overhead for PIL host/target communications or other operations extraneous
to the model. Such purely algorithmic code is easier to interface to your
hand-written or legacy code than code generated by the PIL or RT targets.

Another application of the AE target is to use it to produce a code generation
report. Since only model code is included, you can more easily analyze the
code generated from your model.

The AE target supports both the CodeWarrior® and Wind River
cross-compilers, as specified in your target preferences (see “Setting Target
Preferences” on page 1-18).

To use the AE target,

1 Select Configuration Parameters from the Simulation menu. The
Configuration Parameters dialog opens.

2 Select Real-Time Workshop in the tree.

3 In the Target selection pane, click on the Browse button to open the
System Target File Browser. In the browser, select Target Support
Package FM5 (algorithm export) target. Click OK to close the browser
and return to the Configuration Parameters dialog.

4 Select Templates in the tree and make sure Generate an example main
program is not selected.

5 Follow the usual procedure for generating code from your model or
subsystem.

We recommend using the AE target in conjunction with the Target Support
Package FM5 HTML code generation report (see “HTML Code Analysis
(RAM/ROM) Report” on page 3-28). If you select the Create Code
Generation report option as described in the next section, you can view a
profiling report that includes detailed itemization of RAM and ROM usage

Algorithm Export Target

for all code and data sections, and a complete memory map of the generated
code. You can also easily examine the generated code via hyperlinks in the
code generation report.

3-27

3 PIL Cosimulation

HTML Code Analysis (RAM/ROM) Report

The Target Support Package™ FMS5 product supports an extended version
of the Real-Time Workshop® Embedded Coder™ HTML code generation
report. You can generate reports for the real-time target as well as the
processor-in-the-loop (PIL) target and algorithm export (AE) target.

The extended code generation report includes an additional section, the Code
profile report for the generated application. See the Real-Time Workshop
Embedded Coder documentation for information on the other report sections.

The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of the
generated code. The report is generated from the memory map file (MAP file)
created during the application build process (compilation and linking). This
MAP file is appended to the end of the report to provide the complete details
of the memory layout of the application.

An example Code Profile Report is shown below.
To generate a code generation report and view the profiling report,

1 On the Real-Time Workshop options in the Configuration Parameters
dialog, make sure that the Generate code only option is not selected.

The reason for this step is that the Target Support Package FM5 extended
code generation report obtains information from MAP files that are
created by your cross-compiler during the build process. If the Generate
code only option is on, these files are not generated, which prevents the
generation of the code generation report.

2 Select Report in the tree, and select the check box Create Code
Generation report, as shown in this figure.

3-28

HTML Code Analysis (RAM/ROM) Report

#, Configuration Parameters: mpc555tt_led;/Configuration (Active)

Select:

| [v Create Code Generation repart

- Salver
- [1ata Import/E sport
- O ptimization

- Hardware Implementation
- Model Feferencing

= Real-Time Workshop

- Report

- Comments

- Spmbaols

- Cugtom Code

- Debug

- |nterface

- Code Style

- Templates

- Data Placement

-~ [Data Type Replace...
- Memory Sections

- BT MPCSuR real-tim...
- ET MPCBux real-tim. ..

v Launch report automaticaly

b |x

— Mavigation

¥ Code-to-model

[~ ModeHto-code Configure.. |

— Traceability Report Content

™ Eliminated / virtual blocks

[Traceable Simulink blacks

™ Traceable Stateflow objects

[~ Traceabls Embedded MATLAR scripts

ok I Lancel | Help | Apply |

B

3 Follow the usual procedure for generating code from your model or

subsystem.

The code generation report file is placed in the build directory. The file is
named model codegen_rpt.html or subsystem_codegen_rpt.html.

The MATLAB® Help browser automatically opens and displays the code
generation report. Alternatively, you can view the code generation report

in your Web browser.

4 To view the profiling report, click on the Code profile report link in the

Contents pane of the report.

A portion of an example code profile report is shown following. The raw
memory map (MAP file) is at the bottom of the report.

3-29

3 PIL Cosimulation

3-30

=10l x|

ime Workshop Report
Back Foruard
Contents
sSurmmary

List of eliminated blocks
Subsystermn Repnort
Code profile report
Generated Source Files
Target LED.c

mpesSs main.c

Target LED.h

Target LED private.h
Target LED types.h
profile vars.h
rwtypes h

Code Profile Report

Compiler: Diab

Model Memory Summary,
Entire Memory Summary
Memory MAP Surnmary.
Model Mernary Detail
Entire Mernary Detail
Mermnory Map

Original MAP file

Model Memory Summary

Memory Regions

Read/Write Memory Usage(without rwlib)
Read Only Memory Usage(without rewlib)
Read/\Write Memory Usage(with rtwlib)
Read Only Memory Usagelwith rtwlib)

Size [in bytes]
a2

640

32

640

Entire Memory Summary

Memory Regions and Section Mapping

Read/Write Memory Usage {.bss sbss sdata .data)
Read Only Memory Usage {text sdata? .application_hios .ram_entry)

Size [in bytes]
454
3706

Memory MAP Summary: RAM Target :: Off-chip RAM, On-chip RAM

Memory Type and Section Mapping

Size [in bytes]

OFF-CHIP_RAM (.rarm_entry text sdata2 .data sdata .sbss .bss .application_bios) 4184

QON-CHIP_RAM (. application_bios)

120

Model Memory Detail

Read /Write Memory Usage (with rtwlib)
Target_LED_Y

Target_LED_DWork

Target LED_M_

Target _LED_M

Read Only Memory Usage {with riwlib)
Target LED initislize

Target LED step

File

[COMMON]
bin/DIAR/SSS/Target_LED .o
bin/D1AB/S55/Target_LED.a
bin/D1AR/S555/Target_LED.0
File
bin/DIARSSSS/Target_LED o
bin/D1AR/SS5/Target_LED. .0

Section Size [in bytes]
bss 16

shss 8

shss 4

sdata 4

Section Size [in bytes]
fest 312

Lext 328

4

of

ok I Cancel Help I Lpply

Algorithm Export Target Summary

Algorithm Export Target Summary

In this section...

“Code Generation Options” on page 3-31

“Restrictions” on page 3-31

Code Generation Options

The Algorithm Export (AE) target is an extension of the Real-Time Workshop®
Embedded Coder™ embedded real-time (ERT) target configuration. The AE
target inherits the code generation options of the ERT target, as well as

the general code generation options of the Real-Time Workshop® product.
These options are available under Real-Time Workshop, in the tree on

the Configuration Parameters dialog box; they are documented in the
Real-Time Workshop documentation and the Real-Time Workshop Embedded
Coder documentation.

Some code generation options of the ERT target are not relevant to the AE
target, and are either unsupported, or restricted in their operation, by the AE
target. See “Restrictions” on page 3-31 below for details.

The only target-specific option for AE target is Use prebuilt (static) RTW
libraries. This check box option (selected by default) saves a considerable
amount of time during the build process, as the libraries do not need to be
recompiled every time.

Restrictions

Certain ERT code generation options are not supported by the AE target.

If these options are selected, the AE target either ignores the option or
issues an error message during the build process. AE Target Restricted Code
Generation Options on page 3-32 summarizes these restricted options.

3-31

3 PIL Cosimulation

AE Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds
Create Simulink Error if selected; build process terminates
(S-function) block

Generate ASAP2 file Ignored if selected; build process proceeds
External mode Error if selected; build process terminates

You must not include driver blocks in your model for Algorithm Export. The
AE target is designed to generate only the code that implements the algorithm
of your model or subsystem, without any overhead for PIL host/target
communications or other operations extraneous to the model, so you should
not be including driver blocks.

3-32

Block Reference

MPC555 Drivers (p. 4-2)

CAN Message Blocks and CAN
Drivers (p. 4-7)

Target Support Package™ FM5
device driver blocks

Blocks that provide CAN
functionality

4 Biock Reference

MPC555 Drivers

4-2

Top-Level Blocks (p. 4-2)

CAN 2.0B Controller Module
(TouCAN) (p. 4-3)

Enhanced Queued Analog-to-Digital
Converter Module-64 (p. 4-3)

Execution Profiling (p. 4-4)
Interrupts (p. 4-4)

Modular Input/Output System
(MIOS1) (p. 4-4)

Queued Analog-to-Digital Converter
Module-64 (p. 4-5)

Time Processor Unit (TPU3) (p. 4-5)
Serial Communications Interface

(SCD) (p. 4-6)
Utilities (p. 4-6)

Top-Level Blocks

MPC555 Resource Configuration

Watchdog

Resource configuration and timeout

Controller Area Network (CAN)
utilities

Configure Queued Analog-Digital
Converter (QADC64) on MPC56x

(561-6) for continuous scan or digital
input

Configure execution profiling over
CAN or serial connection

Ensure data integrity between
timer-based and asynchronous tasks

Configure Modular Input/Output
System (MIOS1)

Configure Queued Analog-Digital
Converter (QADC64) for continuous
scan or digital input

Configure Time Processor Unit
(TPU3)

Configure serial transmit and
receive

Configure for predefined hardware
configurations

Support device configuration for
MPC5xx CPU and MIOS, QADC,
and TouCAN submodules

In case of application failure, time
out and reset processor

MPC555 Drivers

CAN 2.0B Controller Module (TouCAN)

CAN Calibration Protocol (MPC555) Implement CAN Calibration Protocol
(CCP) standard

TouCAN Error Count Count transmit and receive errors
detected on selected TouCAN
modules

TouCAN Fault Confinement State Indicate state of TouCAN module

TouCAN Interrupt Generator Generate asynchronous function-call
trigger when CAN interrupt occurs

TouCAN Receive Receive CAN messages from
TouCAN module on MPC5xx

TouCAN Soft Reset Reset TouCAN module

TouCAN Transmit Transmit CAN message via TouCAN
module on MPC5xx

TouCAN Warnings Flag excessively high transmit or
receive error counts on TouCAN
modules

For information about CAN message blocks and CAN drivers, see the “CAN
Blockset Reference”.

Enhanced Queued Analog-to-Digital Converter
Module-64

QADCE Analog In Input driver enables use of Queued
Analog-Digital Converter (QADC64)
in continuous scan mode on MPC56x
(561-6)

QADCE Digital In Input driver enables use of Queued
Analog-Digital Converter (QADC64)
pins as digital inputs on MPC56x
(561-566)

4-3

4 Biock Reference

4-4

Execution Profiling

MPC555 Execution Profiling via
CAN A

MPC555 Execution Profiling via
SCI1

Interrupts

Asynchronous Rate Transition

Provide CAN interface to execution
profiling engine via CAN channel A

Provide serial interface to execution
profiling engine

Transfer data between timer-based
task and asynchronous task,
ensuring data integrity

Modular Input/Output System (MIOS1)

MIOS Digital In

MIOS Digital Out

MIOS Digital Out (MPWMSM)

MIOS Pulse Width Modulation Out

MIOS Waveform Measurement

Input driver for MIOS 16-bit Parallel
Port I/O Submodule (MPIOSM)

Output driver for MIOS 16-bit
Parallel Port I/O Submodule
(MPIOSM)

Digital output via the MIOS Pulse
Width Modulation Submodule
(MPWMSM)

Output driver for MIOS Pulse Width
Modulation Submodule (MPWMSM)

Measure pulse width and pulse
period measurement via MIOS
Double Action Submodule (MDASM)

MPC555 Drivers

Queued Analog-to-Digital Converter Module-64

QADC Analog In

QADC Digital In

Time Processor Unit (TPU3)

TPU3 Digital In

TPUS3 Digital Out

TPU3 Fast Quadrature Decode

TPU3 New Input Capture/Input
Transition Counter

TPUS3 Programmable Time
Accumulator

TPUS3 Pulse Width Modulation Out

TPU3 Rectangular Wave

TPU3 Square Wave

Input driver enables use of Queued
Analog-Digital Converter (QADC64)
in continuous scan mode

Input driver enables use of Queued
Analog-Digital Converter (QADC64)
pins as digital inputs

Configure Time Processor Unit
(TPU3) channel for digital input

Configure Time Processor Unit
(TPU3) channel for digital output

Configure pair of TPU3 channels for
Fast Quadrature Decode (FQD)

Configure Time Processor Unit
(TPU3) channel for New Input
Capture/Input Transition Counter
(NITC)

Configure Time Processor Unit
(TPU3) channel for Programmable
Time Accumulator (PTA)

Configure Time Processor Unit
(TPU3) channel for pulse width
modulation (PWM) output

Configure Time Processor Unit
(TPU3) channel for Rectangular
Wave Output (RECTW)

Configure Time Processor Unit
(TPU3) channel for Square Wave
Output (SQW)

4-5

4 Biock Reference

Serial Communications Interface (SCI)

Serial Receive

Serial Transmit

Utilities

Switch External Mode Configuration

Switch Target Configuration

4-6

Configure MPC555 for serial receive
on either of QSMCM submodules
SCI1 or SCI2

Configure MPC555 for serial
transmit, using one of QSMCM
submodules SCI1 or SCI2

Configure model for external mode
or executable building

Configure model and target
preferences to predefined hardware
configuration

CAN Message Blocks and CAN Drivers

CAN Message Blocks and CAN Drivers

For information about CAN message blocks and CAN drivers, see the “CAN
Blockset Reference”.

4 Biock Reference

4-8

Blocks — Alphabetical List

Asynchronous Rate Transition

Purpose

Library

Description

Asynchronous
Rate
Transition

Asynchronous Rate Transition

Dialog
Box

Transfer data between timer-based task and asynchronous task,
ensuring data integrity

Target Support Package FM5/ MPC555 Driver Library/ Interrupts

The Asynchronous Rate Transition block is used when reading

or writing signals attached to an asynchronous subsystem. An
asynchronous subsystem is one which is driven by an interrupt function
call trigger. The subsystem is run in the context of an interrupt and not
in the context of the model. You must place one of these blocks on each
input and output of any subsystem that is triggered asynchronously

by an interrupt.

The Asynchronous Rate Transition block copies the signal from input to
output while disabling interrupts. This ensures that blocks outside the
subsystem that want access to the signal do not get interrupted while
reading or writing a signal and end up with corrupt data.

E! Block Parameters: Asynchronous Rate Transiki 2lxl

—azynchronous R ate Tranzsition [mazk] [link]

Transfer data between a timer bazed task and an asynchronous task, ensuring data
inteqrity. v'ou muzt place one of theze blocks on each input and output of any
subzyzstem that is triggered asynchronously by an interupt. You should zet the zample
time equal to that of the timer bazed task.

—Parameter

S ample time:

M

oK I Cancel Help Apply

Sample time
You should set the sample time equal to that of the timer based
task, as shown in the following example model.

Asynchronous Rate Transition

TouCAMN_A
IRQ - Error

TouCAM Interrupt Generator '

¥

Asynchronous function(Asynchronous
b — Transition Transition . ——
Signal Specification = Signal Specification
Asynchronous Rate Transition Function-Call Asynchronous Rate Transitiont
Subsystem

See also the TouCAN Interrupt Generator.

5-3

CAN Calibration Protocol (MPC555)

5-4

Purpose

Library

Description

CCP

CAH Calibration Protacal

Implement CAN Calibration Protocol (CCP) standard

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The CAN Calibration Protocol (MPC555) block provides an
implementation of a subset of the CAN Calibration Protocol (CCP)
Version 2.1. CCP is a protocol for communicating between the target
processor and the host machine over CAN. In particular, a calibration
tool (see “Compatibility with Calibration Packages” on page 5-9)
running on the host can communicate with the target, allowing remote
signal monitoring and parameter tuning.

This block processes Command Receive Object (CRO) messages and
outputs the resulting Data Transmission Object (DTO) and Data
Acquisition (DAQ) messages.

For more information on CCP, refer to ASAM Standards: ASAM MCD:
MCD Ia on the Association for Standardization of Automation and
Measuring Systems (ASAM) Web site at http://www.asam.de.

You can see an example illustrating how to use the CAN Calibration
Protocol (MPC555) block in the mpc555rt_ccp demo.

Note this block is entirely CAN triggered, and so is only designed for the
Real-Time Target (CAN is disabled during PIL and SIL cosimulation.)

Using the DAQ Output

Note The CCP Data Acquisition (DAQ) List mode of operation is only
supported with the Real-Time Workshop® Embedded Coder™ product.
If this is not available then custom storage classes canlib.signal are
ignored during code generation: this means that the CCP DAQ Lists
mode of operation cannot be used.

You can use the CCP Polling mode of operation with or without
Real-Time Workshop Embedded Coder software.

http://www.asam.de

CAN Calibration Protocol (MPC555)

The DAQ output is the output for any CCP DAQ lists that have been set
up. You can use the ASAP2 file generation feature of the RT target to

® Set up signals to be transmitted using CCP DAQ lists.

® Assign signals in your model to a CCP event channel automatically
(see “Parameter Tuning and Signal Logging” on page 2-32).

Once these signals are set up, event channels then periodically fire
events that trigger the transmission of DAQ data to the host. When this
occurs, CAN messages with the appropriate CCP/DAQ data appear on
the DAQ output, along with an associated function call trigger.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages” on page 5-9) to use CCP commands to assign an
event channel and data to the available DAQ lists, and to interpret
the synchronous response.

Using DAQ lists for signal monitoring has the following advantages
over the polling method:

® There is no need for the host to poll for the data. Network traffic is
halved.

® The data is transmitted at the correct update rate for the signal.
Therefore there is no unnecessary network traffic generated.

® Data is guaranteed to be consistent. The transmission takes
place after the signals have been updated, so there is no risk of
interruptions while sampling the signal.

Note The Target Support Package™ FMS5 product does not currently
support event channel prescalers.

CAN Calibration Protocol (MPC555)

Dialog
Box

[Z1Block Parameters: CAN Calibration Protocol |
—CAM Calibration Protocal (MPCEE5] [mask] (link)

Implements CAM Calibration Protocol [CCF +2.1] on the target processor,

Thiz block, proceszes Command Receive Object [CRO) meszages and outputs the

resulting Data Transmizzion Object [DTO] and Data Acquisition [DAD] meszages.
—Parameters

CCP station address (16-bit integer];

hex2decl1]

TouCAaM module:l A LI

CAM meszage identifier [CRO);

| hew2decBFA)

CAM message type [CRO: | Extended [29-bit identifier] |

CAMN meszage identifier (DT 0/DAQ]:

| hew2decBFE)

CAM message type [DTO/DAQ): | Exterded [29-hit identifier) |

[v FIFO queue length [DAQ) equals number of 00Tz

FIFDO queue length [DAG];

Total number of Object Dezcriptor Tables (ODTz):

ja

CRO zample time:

[T}

ak I Cancel |

Apply

CAN station address (16 bit integer)
The station address of the target. The station address is
interpreted as a uint16. It is used to distinguish between
different targets. By assigning unique station addresses to targets
sharing the same CAN bus, it is possible for a single host to
communicate with multiple targets.

TouCAN module

Choose A or B.

CAN Calibration Protocol (MPC555)

CAN message identifier (CRO)
Specify the CAN message identifier for the incoming Command
Receive Object (CRO) message you want to process.

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data
Transmission Object (DTO) and Data Acquisition (DAQ) message
outputs. It is also used for transmitting messages to the host
during the software-induced CAN download (soft boot). See
“Extended Functionality” on page 5-10.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ
outputs. Select either Standard(11-bit identifier) or
Extended(29-bit identifier).

FIFO queue length (DAQ) equals number of ODTs
Leave this check box selected to automatically set the FIFO queue
length equal to the number of Object Descriptor Tables (ODTs)
(recommended). Clear the check box to set the length of the FIFO
queue manually.

FIFO queue length (DAQ)
Specify the FIFO queue length manually. This is enabled if you
clear the check box to set the queue length automatically.

Total number of Object Descriptor Tables (ODT's)
The default number of Object Descriptor Tables (ODTs) is 8.
These ODTs are shared equally between all available DAQ lists.
You can choose a value between 0 and 254, depending on how
many signals you want to log simultaneously. You must make
sure you allocate at least 1 ODT per DAQ list, or your build will
fail. The calibration tool will give an error message if there are too
few ODTs for the number of signals you specify for monitoring. Be
aware that too many ODTs can make the sample time overrun.

5-7

CAN Calibration Protocol (MPC555)

5-8

If you choose more than the maximum number of ODTs (254),
the build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would
require over 14 KB of memory, a large proportion of the available
memory on the target. To conserve memory on the target the
default number is low, allowing DAQ list signal monitoring with
reduced memory overhead and processing power.

As an example, if you have five different rates in a model, and you
are using three rates for DAQ, then this will create three DAQ
lists and you must make sure you have at least three ODTs. ODTs
are shared equally among DAQ lists, and therefore you will end
up with one ODT per DAQ list. With less than three ODTs you
get zero ODTSs per DAQ list and the behavior is undefined.

Taking this example further, say you have three DAQ lists with
one ODT each, and start trying to monitor signals in a calibration
tool. If you try to assign too many signals to a particular DAQ list
(that is, signals requiring more space than seven bytes (one ODT)
in this case), then the calibration tool will report this as an error.

For more information on DAQ lists, see “Data Acquisition (DAQ)
List Configuration” on page 2-44.

CRO sample time

Sample time at which to check for incoming Command Receive
Object (CRO) messages.

Supported CCP Commands

The following CCP commands are supported by the CAN Calibration
Protocol (MPC555) block:

® CONNECT

® DISCONNECT

® DNLOAD

CAN Calibration Protocol (MPC555)

* DNLOAD 6

e EXCHANGE_ID

e GET_CCP_VERSION
e GET_DAQ_SIZE

e GET_S_STATUS

e SET_DAQ_PTR

e SET_MTA

e SET_S_STATUS

* SHORT_UP

e START_STOP

e START_STOP_ALL
o TEST

e UPLOAD

e WRITE_DAQ

Compatibility with Calibration Packages

The above commands support

® Synchronous signal monitoring via calibration packages that use
DAQ lists

® Asynchronous signal monitoring via calibration packages that poll
the target

® Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ
list and polling mode, and with the Accurate Technologies Inc. Vision
calibration package running in DAQ list mode. (Note that Accurate

CAN Calibration Protocol (MPC555)

5-10

Technologies Inc. Vision does not support the polling mechanism for
signal monitoring.)

Extended Functionality

The CAN Calibration Protocol (MPC555) block also supports the
PROGRAM_PREPARE command. This command is an extension of CCP that
allows the automatic download of new code into the target memory. This
removes the requirement for a manual reset of the processor. On receipt
of the PROGRAM_PREPARE command, the target will reboot and begin the
CAN download process. This lets you download new application code

to RAM or flash memory, or download new boot code to flash memory.
See “Downloading Boot or Application Code via CAN Without Manual
CPU Reset” on page 2-27.

Note The CAN message identifiers of the CCP messages incoming

to the target (Command Receive Object (CRO) messages) and the
messages outgoing from the target (Data Transmission Object (DTO) or
DAQ) are specified in the block mask for the CAN Calibration Protocol
(MPC555) block. These message identifiers are used as the CAN
identifiers for the download process after a PROGRAM_PREPARE reboot.
The type of CAN message used for this PROGRAM_PREPARE download
process is always Extended (29-bit identifier).

MIOS Digital In

Purpose

Library

Description

Crigital In
(MP OS]

MIOS Digital In

Input driver for MIOS 16-bit Parallel Port I/O Submodule (MPIOSM)

Target Support Package FM5/ MPC555 Driver Library/ Modular
Input/Output System (MIOS1)

The MIOS Digital In block reads the state of selected pins (bits) on the
MIOS 16-bit Parallel Port I/O Submodule (MPIOSM) of the MPC555.
The Bits field specifies a vector of numbers in the range 0. .15,
corresponding to pins MPI032B0. .MPI032B15 on the MPIOSM.

The output of the block is a wide vector representing the logic state of
the pins referenced in the Bits field. When the signal on a given pin is
a logical 1, the block output element will be equal to 1; otherwise the
block output element will equal zero.

Refer to section 15.13, "MIOS 16-bit Parallel Port I/O Sub module
(MPIOSM)," in the MPC555 User’s Manual for further information.

Note You are responsible for ensuring that pin assignments of MIOS
Digital In and MIOS Digital Out blocks in your model do not conflict.
No error checking is performed to detect conditions where the same pin
is referenced by both an input and an output block. If such a condition
occurs, the behavior of the system is undefined.

5-11

MIOS Digital In

L]
Dla |Og [E]source Block Parameters: MIDS Digital In x|
Box —MPCEES Digital Input (MPI0SkK)] [mask] (ink]
Reads the logical state of specified pins on the MI0S 16-bit parallel port 10
submodule [MPIOSk),

Specify the bitz you want to read az a vector of numbers from [0..15], comesponding
to pinz MPIO32B0. MPIO32B15.

—Farameters
Bits:
Sample time;
[il]
u] % I Cancel | Help |
Bits

A vector of numbers in the range 0. . 15. Each number corresponds
to a pin (MPI032B0. .MPI032B15) on the MPIOSM.

Sample time
Sample time of the block.

5-12

MIOS Digital Out

Purpose

Library

Description

Crigital Out
(MPI0S)

MIOS Digital Out

Output driver for MIOS 16-bit Parallel Port I/O Submodule (MPIOSM)

Target Support Package FM5/ MPC555 Driver Library/ Modular
Input/Output System (MIOS1)

The MIOS Digital Out block sets the state of selected pins (bits) on the
MIOS 16-bit Parallel Port I/O Submodule (MPIOSM) of the MPC555.
The Bits field specifies a vector of numbers in the range 0. .15,
corresponding to pins MPI032B0. .MPI032B15 on the MPIOSM.

The input to the block is a wide vector with one signal element per pin.
When the input signal is greater than zero, a logical 1 is written to the
corresponding pin. When the input signal is less than or equal to zero, a
logical zero is written to the corresponding pin.

If you want to write to several digital output pins at the same sample
rate, using a single MIOS Digital Out block with a vector input signal
will result in more efficient code. However, if you want to update
different output pins at different sample rates, you must use a separate
MIOS Digital Out block for each rate.

Refer to section 15.13, "MIOS 16-bit Parallel Port I/O Sub module
(MPIOSM)," in the MPC555 User’s Manual for further information.

Note You are responsible for ensuring that pin assignments of MIOS
Digital In and MIOS Digital Out blocks in your model do not conflict.
No error checking is performed to detect conditions where the same pin
is referenced by both an input and an output block. If such a condition
occurs, the behavior of the system is undefined.

5-13

MIOS Digital Out

Dialog
Box

5-14

E! Sink Block Parameters: MIOS Digital Duk x|

—MPCS55 Digital Dutput (MPIDSH) (mask] llink)

Setz the logical state of specified ping on the MIOS 16-bit parallel port /0 submodule
[MPIOSM]. “when an element in the input signal is greater than zero a logical one is
written to the coresponding pin; othenwize a logical zero is wiitten.

Specify the bits you want to set az a vector of numberz from [0..15], coresponding to
pire MPID32B0. MPI0O32B15. The width of thiz vector must be the same az the width
aof the input sighal.

—Farameters

Bits:

i01]

Initial output level:

Jo
Sample time:
|
0K I Cancel Help Apply |
Bits

A vector of numbers in the range 0. . 15. Each number corresponds
to a pin (MPI032B0..MPI032B15) on the MPIOSM.

Initial output level
The value to be placed on the output pins at initialization. This
ensures the starting level is always known.

Sample time
The sample time of this block.

MIOS Digital Out (MPWMSM)

Purpose
Library

Description

Cigital Out
ChA PR S)

MIOS Digital Out
(A PURAS 1)

Dialog
Box

Digital output via the MIOS Pulse Width Modulation Submodule
(MPWMSM)

Target Support Package FM5/ MPC555 Driver Library/ Modular
Input/Output System (MIOS1)

The MIOS Digital Out MPWMSM) block is a device driver that lets
you use the MIOS Pulse Width Modulation Submodule (MPWMSM)

in digital output mode. In digital output mode, the Pulse Width
Modulation (PWM) feature of the MPWMSM is turned off. When the
input signal is greater than zero, a logical 1 is written to the output pin;
otherwise a logical zero is written.

Refer to section 15.12, "MIOS Pulse Width Modulation Submodule
(MPWMSM)," in the MPC555 User’s Manual for further information on
the parameters described below.

E! Sink Block Parameters: MIOS Digital Ouk (MP il

—MPCS55 Digital Dutput (MPAWHSH) [mask] (ink]

Configurez a MIOS pulze width modulation submodule [MPwWSE] for uze as digital
output. When the input gignal iz greater than zero a logical one is written to the output
pin; otherwise & logical zero is written.

Thig block outputs on one of the ping MPW RO, MPYWHES or MPWTE MPW M2,
Ping MPwWh4, MPwWE, MPW20 and MPWIET are only available on MPCExe
wariants that have a MIOS514 madule.

—Parameters
P submodule number:m
Iriitial output Ievel:l i] ;I
Sarmple time:

K]

0K I Cancel Help Apply

5-15

MIOS Digital Out (MPWMSM)

5-16

MPWM submodule number
Select a PWM submodule for output. Note that modules 4, 5, 20
and 21 are for the MPC56x (561-6) only. If you select one of these
modules and MPC555 is the processor selected in the Resource
Configuration block, then an error will be thrown on updating
the model.

Initial output level
The value to be placed on the output pins at initialization. This
ensures the starting level is always known.

Sample time
Sample time of the block.

Invert output polarity
Switches the output level for logic one and zero.

MIOS Pulse Width Modulation Out

Purpose
Library

Description

Furkd Clut
[P S R

MIOS Pulse Width Modulation Out

Output driver for MIOS Pulse Width Modulation Submodule
(MPWMSM)

Target Support Package FM5/ MPC555 Driver Library/ Modular
Input/Output System (MIOS1)

The MIOS Pulse Width Modulation Out block is used for Pulse Width
Modulation (PWM) output from the MIOS Pulse Width Modulation
Submodule (MPWMSM). A PWM signal is a rectangular waveform
whose period is constant but whose duty cycle can be varied, under
control of a modulator signal, between 0% and 100%.

The MIOS Pulse Width Modulation block input signal acts as the
modulator, controlling the duty cycle of the signal on the output pin. The
input signal is multiplied by the period register value, and saturates

if outside 0-1. When the input signal value is 0, the output signal’s
duty cycle is 0%. When the input signal value is 1, the output signal’s
duty cycle is 100%.

There are two possible methods for calculating the period of the
waveform. You can either control the scaling registers directly, or enter
the desired (ideal) period and the mask will solve for the best values for
the scaling registers.

Refer to section 15.12, "MIOS Pulse Width Modulation Submodule
(MPWMSM)," in the MPC555 User’s Manual for further information on
the parameters described below.

5-17

MIOS Pulse Width Modulation Out

L]
Dla |Og E! Sink Block Parameters: MIOS Pulse Width Mod 5'

Box —MPLCEEE Pulze ‘Wwidth Modulation Output [P Sk (mazk] [link]

Cotfigurez a MIOS pulse width modulation submadule [MP4WSHK] ta generate &
pulse width modulated output signal.

Thig block outputs on one of the ping MPW RO, MPYWHES or MPWTE MPW M2,
Ping MPWwh 4, MFWwWE, MPWIZ0 and MPWIZT are only available on MPCExe
wariants that have a MIOS514 madule.

—Farameters

MPWM submocte rumbe:: (AR - |

[~ Edit period registers manualiy

|deal period [zec):

|00375

Initial duty cpcle [0 <= duty cycle <= 1];

[l

Clock prescaler field of MPWwWMSH Status/Control Register:
|58

Humber of clock ticks per penod:

|45a75

Sample time:
|1

[Irevert output polarity

[~ Activate hanzparent mode

[~ Hald autput when at debug breakpoint [freeze enable)

0K I Cancel | Help | Apply |

MPWM submodule number
Select a PWM submodule for output. Note that modules 4, 5, 20
and 21 are for the MPC56x (561-6) only. If you select one of these
modules and MPC555 is the processor selected in the Resource
Configuration block, then an error will be thrown on updating
the model.

5-18

MIOS Pulse Width Modulation Out

Edit period registers manually
When this option is selected, the Clock prescaler field of
MPWMSM Status/Control Register and Number of clock
ticks per period edit fields are activated. You can then set the
PWM period by setting these values.

When this option is not selected, use the Ideal period (sec) field
to set the PWM period parameters.

Ideal period (sec)
Specifies the desired period of the pulse signal. The mask then
solves for the clock prescaler and the pulse period.

Initial duty cycle
Enter an initial value for the duty cycle (0 <= duty cycle <= 1).
This ensures the initial value is always known.

Clock prescaler field of MPWMSM Status/Control Register
Divides the counter clock to get the clock signal used to drive the
PWM output. Note that the counter clock itself is derived from
the MPC555 system clock as configured by the MPC555 Resource
Configuration block (see MPC555 Resource Configuration).

Number of clock ticks per period
Determines the number of PWM counter ticks per pulse period.
Valid values are 1 - 65535.

Sample time
Sample time of the block.

Invert output polarity
Switches the output level for logic one and zero.

Activate transparent mode
Bypasses the register double buffers. When transparent mode
is active, a software write to the Next Pulse Width Register is
immediately transferred to the Pulse Width Register. When
transparent mode is inactive, the updated value only takes effect
at the start of the next period.

5-19

MIOS Pulse Width Modulation Out

Hold output when at debug break point (freeze enable)
Stops the PWM counters when a breakpoint is hit during debug
mode, and holds the current output values.

5-20

MIOS Waveform Measurement

Purpose
Library

Description

Fulze Width
(MDASM)

MIOS Waveform Measurement

Measure pulse width and pulse period measurement via MIOS Double
Action Submodule (MDASM)

Target Support Package FM5/ MPC555 Driver Library/ Modular
Input/Output System (MIOS1)

Waveform measurement is a feature of the MIOS Double Action
Submodule (MDASM) on the MPC555. The MIOS Waveform
Measurement block currently implements the following features of the
MDASM:

® Pulse width measurement: the MIOS Waveform Measurement block
outputs the time from the leading edge of a pulse to the trailing edge
of the same pulse.

® Pulse period measurement: the MIOS Waveform Measurement block
outputs the time from the leading edge of a pulse to the next leading
edge of a pulse.

Note that the minimum and maximum measurable pulse periods and
pulse widths are dependent on the selected clock sources and their
configurations.

You must configure the clock sources via the MPC555 Resource
Configuration object. There are only two clock sources (assigned via the
Counter bus parameter) assignable to the 10 MDASM modules. More
than one MDASM can be assigned to a single clock source.

Refer to section 15.11, "MIOS Double Action Submodule (MDASM)
Registers" in the MPC555 User’s Manual for further information on
the parameters described below.

5-21

MIOS Waveform Measurement

Dialog
Box

5-22

E! Source Block Parameters: MIDS Waveform x|

—MPCEES waveform Measurement [MOASH) [mask] [link]

Configures the MIOS double action submodule (MOASHM] for pulze width or pulze
perod measurement.

Thiz block inputs on one of the ping MDA MDATS or MDAZT MDAZT.

—Parameters

MDASM submoduiz rurmber: { NG |

eazurement: I Pulse width

=
=l

Counter bus:l Counter Bus B [CBE)

Meazurement range: [resolution, max] seconds
I[0.0002048 . 13.4218]

Sample time:
Joa

I~ Irevert input polarity

I Hold intermal counters when at debug breakpoint [fresze enable]

oK I Cancel | Help |

MDASM submodule number
Select one of the 10 MIOS Double Action Submodules (MDASM)

in the MPC555.

Measurement
Select the mode of operation of the block: either pulse width
measurement or pulse period measurement.

Counter bus
Select one of the two counters that can be used as sources to

drive the MDASM module. The counters must be configured
via the MPC555 Resource Configuration object. See “MIOS1
Configuration Parameters” on page 5-41.

Measurement range: [resolution, max] seconds
This read only field displays the measurement range of the pulse
width or pulse period. The example shown is from the MPC555
real-time I/O demo model mpc555rt_io.

MIOS Waveform Measurement

Sample time
The period at which Simulink® reads the pulse width or period.
The measurements are performed in hardware so it is not
necessary to set the sample time to suit the expected period of
the incoming signal.

Invert input polarity
Changes the sense of the leading edge of the pulse. When Invert
output polarity is selected, the leading edge is rising. Otherwise,
the leading edge is falling.

Hold internal counters when at debug break point (freeze
enable)
Stops the clocks of the MDASM module when a breakpoint is hit
during debug mode.

5-23

MPC555 Execution Profiling via CAN A

5-24

Purpose

Library

Description

Execution
Frofiling

WP CS55 Execution Profiling
wia CAN A

Provide CAN interface to execution profiling engine via CAN channel A

Target Support Package FM5/ MPC555 Driver Library/ Execution
Profiling

Provides a CAN interface to the execution profiling engine. On
receipt of a start command message, logging of execution profile data
is commenced. On completion of a logging run, the recorded data

is automatically returned via CAN. You must specify the message
identifiers for the start command and the returned data. These
identifiers must be compatible with the values used by the host-side
part of the execution profiling utility. See also MATLAB® command
profile_mpc555.

profile mpc555(connection) collects and displays execution profiling
data from an MPC555 target microcontroller that is running a suitably
configured application generated by the Target Support Package™ FM5
product. Set connection to 'CAN' in order to collect data via a CAN
connection between the target and the host computer. To use the CAN
connection, you must have suitable CAN hardware installed on the
host computer. This function will test for availability of CanCardX 1 or
CanAc2Pcil and defaults to a bit rate of 500k bits per second. If you
need to use a different configuration, you should make a copy of this file
(with a different name) and change the configuration data as required.
The data collected is unpacked then displayed in a summary HTML
report and as MATLAB graphic.

profdata = profile_mpc555(connection)

returns the execution profiling data in the format documented by
exprofile_unpack.

See “The Profiling Command” on page 2-48 for instructions for setting
the bit rate automatically or manually.

To configure a model for use with execution profiling, you must perform
the following steps:

MPC555 Execution Profiling via CAN A

Dialog
Box

1 Make sure the model includes an MPC555 Execution Profiling block
that provides an interface between the target-side profiling engine,
and the host-side computer from which this command is run.

2 Make sure the execution profiling option is selected in the MPC5xx
Options pane of the Configuration Parameters dialog box.

For more information see “Execution Profiling” on page 2-47
which includes links to instructions for the example demo
mpc555rt_multitasking.mdl.

Block Parameters: MPC555 Execution Pro k|

— MPCEES Execution Profiling via CAM Channel & [mazk] (link]

Provides a CAM interface to the execution profiling engine. On receipt of a
start command meszage, logging of execution profile data iz commenced.
On completion of & logging run, the recorded data is automatically
returned via CAN.

You muzt specify the mezsage identifiers for the start command and the
returned data, These identifiers must be compatible with the values used
by the host-zside part of the execution profiling utility. See also MATLAR
command profile_mpcB55.

— Parameters
Start command CAN meszage identifier:

c[1FFFFFOO]

Returned data CAN meszage identifier:
IhBH2dBC['1 FFFFFOTY

Sample time:

[
(1] I Cancel | Help | Apply |

Start command CAN message identifier
Set the identifier of the message to start logging execution
profiling data. You should use the default unless you have
modified profile_mpc555. This identifier must be compatible
with the values used by the host-side part of the execution
profiling utility (profile mpc555).

5-25

MPC555 Execution Profiling via CAN A

The utility profile mpc555 provides a mechanism for initiating
an execution profiling run and for uploading the recorded data

to the host machine. To perform this procedure using a CAN
connection between host and target, profile mpc555 first sends
a CAN message that is a command to start an execution profiling
run. The CAN identifier for this message must be specified as the
same value on the target as on the host. The host-side values are
hard-coded in profile mpc555. If you are using an un-modified
version of the host side utility, you should use the default value for
this CAN message identifier. These are visible to help you avoid
using the same identifier for other tasks.

Returned data CAN message identifier
Set the message identifier for the returned data. As with the
message identifier for the start command, the value specified here
must be the same as the hard-coded value in profile_mpc555.

Sample time
The sample time of the block. The faster the sample time of the
block, the faster data will be uploaded at the end of the execution
profiling run. You may want to run this block slower than the
fastest rate in the system because the execution profiling itself
imposes some loading on the processor. You can minimize this
extra loading by not running it at the fastest rate.

5-26

MPC555 Execution Profiling via SCI1

Purpose

Library

Description

Execution Profiling
via Serial

WP CS55 Execution Profiling
wia SCH

Provide serial interface to execution profiling engine

Target Support Package FM5/ MPC555 Driver Library/ Execution
Profiling

Provides a CAN interface to the execution profiling engine. On
receipt of a start command message, logging of execution profile data
is commenced. On completion of a logging run, the recorded data

is automatically returned via serial. See also MATLAB® command
profile_c166.

profile mpc555(connection) collects and displays execution profiling
data from an MPC555 target microcontroller that is running a suitably
configured application generated by the Target Support Package™ FM5
product. The connection may be set to’serial’ in order to collect data
via a serial connection between the target and the host computer.

The data collected is unpacked then displayed in a summary HTML
report and as MATLAB graphic.

profdata = profile_mpc555(connection)

returns the execution profiling data in the format documented by
exprofile_unpack.

See “The Profiling Command” on page 2-48 for instructions for setting
the bit rate automatically or manually.

To configure a model for use with execution profiling, you must perform

the following steps:

1 Make sure the model includes an MPC555 Execution Profiling block
that provides an interface between the target-side profiling engine,
and the host-side computer from which this command is run.

2 Make sure the execution profiling option is selected in the MPCb5xx
Options pane of the Configuration Parameters dialog box.

5-27

MPC555 Execution Profiling via SCI1

For more information see “Execution Profiling” on page
2-47 which includes instructions for the example demo
mpc555rt_multitasking.mdl.

.
Dia |Og [Z]Block Parameters: MPC555 Execution Profiling 2|
Box —MPCEES Ewxecution Profiling wia Serial Portt SCH [mazk]

Provides a zerial interface to the execution profiling engine. On receipt of a start
command to the serial port, logging of execution profile data iz commenced. On
completion of a logging run, the recorded data is automatically returned wia sernial.

Mo ather sernial blocks may be used in the model if an Execution Profiing via Serial
block iz present.

See alzo MATLAE command profile_mpch5h.

—Farameters

Sample time:

1]

Ok | LCancel | Help Lpply

Sample time
The sample time of the block. The faster the sample time of the
block, the faster data will be uploaded at the end of the execution
profiling run. You may want to run this block slower than the
fastest rate in the system because the execution profiling itself
imposes some loading on the processor. You can minimize this
extra loading by not running it at the fastest rate.

5-28

MPC555 Resource Configuration

Purpose

Library

Description

hP LS55
Rezource
Configuration

Support device configuration for MPC5xx CPU and MIOS, QADC, and
TouCAN submodules

Target Support Package FM5/ MPC555 Driver Library

The MPC555 Resource Configuration block differs in function and
behavior from conventional blocks. Therefore, we refer to this block as
the MPC555 Resource Configuration object.

The MPC555 Resource Configuration object maintains configuration
settings that apply to the MPC555 CPU and its MIOS, QADC, and
TouCAN subsystems. Although the MPC555 Resource Configuration
object resembles a conventional block in appearance, it is not connected
to other blocks via input or output ports. This is because the purpose of
the MPC555 Resource Configuration object is to provide information to
other blocks in the model. MPC555 device driver blocks register their
presence with the MPC555 Resource Configuration object when they
are added to a model or subsystem; they can then query the MPC555
Resource Configuration object for required information.

To install a MPC555 Resource Configuration object in a model or
subsystem, open the top-level Target Support Package™ FMS5 library
and select the MPC555 Resource Configuration icon. Then drag and
drop it into your model or subsystem, like a conventional block.

Having installed a MPC555 Resource Configuration object into your
model or subsystem, you can then select and edit configuration settings
in the MPC555 Resource Configuration window. See “Using the MPC555
Resource Configuration Window” on page 5-34 for further information.

5-29

MPC555 Resource Configuration

5-30

Note Any model or subsystem using device driver blocks from the
Target Support Package FM5 library must contain an MPC555
Resource Configuration object. You should place an MPC555 Resource
Configuration object at the top level system for which you are going

to generate code. If your whole model is going to run on the target
processor, put the MPC555 Resource Configuration object at the root
level of the model. If you are going to generate code from separate
subsystems (to run specific subsystems on the target), place an MPC555
Resource Configuration object at the top level of each subsystem. You
should not have more than one MPC555 Resource Configuration object
in the same branch of the model hierarchy. Errors will result if these
conditions are not met.

When the MPC555 Resource Configuration block is placed into a model,
it modifies the preloadfcn callback of the model. If you wish to add a
command to the preloadfcn callback of a model that already has an
MPC555 Resource Configuration block, do not remove the commands
that are already installed.

Instead, copy the installed preloadfcn callback and append your
commands. Then set the preloadfcn to the merged command. If you
corrupt the preloadfcn, you can retrieve the command from any model
that has an MPC555 Resource Configuration block, as the preloadfcn
will be the same for all models. You can retrieve the preloadfcn with
the following command:

plf = get_param(bdroot, 'preloadfcn')

Types of Configurations

A configuration is a collection of parameter values affecting the
operation of a group of device driver blocks in one of the Target Support
Package FM5 libraries, such as the MIOS1, QADC64 or TouCAN
libraries. The MPC555 Resource Configuration object currently
supports the following types of configurations:

MPC555 Resource Configuration

* “System Configuration Parameters” on page 5-36: MPC555 clocks
and other CPU-related parameters.

* “QADC64 Configuration Parameters” on page 5-38: parameters
related to the Queued Analog-to-Digital Converter module (QADC).

* “QADCG64E Configuration Parameters” on page 5-40: parameters
related to the QADC for the MPC565.

e “MIOS1 Configuration Parameters” on page 5-41: parameters related
to the Modular Input/Output System (MIOS).

¢ “TouCAN Configuration Parameters” on page 5-43: parameters
related to the CAN 2.0B Controller Module (TouCAN).

* “Time Processor Unit (TPU3) Configuration Parameters” on page
5-46: parameters related to the Time Processor Unit module.

® “Serial Communications Interface (SCI) Configuration Parameters”
on page 5-50: parameters related to the Serial Communications
Interface.

Active and Inactive Configurations

An active configuration is a configuration associated with blocks of the
model or subsystem in which the MPC555 Resource Configuration
object is installed. There is always an active MPC555 configuration. For
any other configuration type (e.g., QADC, MIOS, or TouCAN), there is at
most one active configuration. Such configurations are only active when
relevant device driver blocks are present in the model or subsystem.

Consider this model, which contains a MPC555 Resource Configuration
object but no MPC555 device driver blocks.

5-31

MPC555 Resource Configuration

5-32

R)
1 1 1 1

+ utd
Fulze

Genearator

hF 555
Resource
Canfiguration

This model has only one active configuration, for the MPC555 itself, as
shown in the MPC555 Resource Configuration window.

=101 x]
Active Configurations] Systern Configuration |
— CLKOUT 20000000.0
— Cscillator_Freguency 20000000.0
— RT_ONESTEP_IRG_LEVEL j INT_LEVELD
— Systerm_Clock 200000000
— System_Frequency 40000000.0
— JBIU_PLPRCR_B_DINF 0
— USIU_PLPRCR_B_MF 0
— UBIU_SCCR_B_DFMH 0
— USIU_SCCR_B_DFML 0
- UgIU_SCCR_B_EBDF 0
| | il
Status |
0E =
Walidate Configuration | Close |

When a device driver block is added to the model, an appropriate
configuration is created and activated. The following figure shows an
MIOS Digital Out block added to the model.

MPC555 Resource Configuration

H+ +H+ Digital Out
DL naz;)

+H Outd

Fulze WIOS Digital Out
Generator (MPIOSh

hPC555
Resource
Configuration

The addition of the MIOS Digital Out block causes an MIOS
configuration to be added to the list of active configurations, as shown
in this figure.

_lolx]
Active Configurations | MIOS1 Configuration |
mpes55drivers CounterClock 1250000.0 -

odular Inputioutpu ulil] Freeze_Enahle I% True
Modulus_Counter_22 MPCasadkConfio MIOS_Ch
Modulus_Counter & MPCESAdKConfig MIOS_C
Frescaler a
Frescaler_Enable [True ﬂ
Status |
O :
alidate Configuration | Cloge |

A configuration remains active until all blocks associated with it are
removed from the model or subsystem. At that point, the configuration
is in an inactive state. Inactive configurations are not shown in

the MPC555 Resource Configuration window. You can reactivate a
configuration by simply adding an appropriate block into the model.

5-33

MPC555 Resource Configuration

5-34

Note When using device driver blocks from the Target Support
Package FM5 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver
blocks. If library links are disabled or broken, the MPC555 Resource
Configuration block will operate incorrectly.

Using the MPC555 Resource Configuration Window

To open the MPC555 Resource Configuration window, install a
MPC555 Resource Configuration object in your model or subsystem,
and double-click on the MPC555 Resource Configuration icon. The
MPC555 Resource Configuration window then opens.

loix]
Active Configurations | System Configuration |
mpcassdrivars — CLKOUT 200000000
mpcassdrivers/Queued Analog-To-Digital Converter Module-64 | || — Oscillator_Frequency 20000000.0
mpcaasdrivers/Modular InputiOutput System (MIOS1) — RT_COMESTEP_IRG_LEYEL :l INT_LEVELD
mpcaasdrivers/iCAN 2.08 Contraller Module — Systern_Clock 20000000.0
— Bystem_Freguency 40000000.0
I USIU_PLPRCR_B_DIVF i
— USIU_PLPRCR_B_MF i
— USIU_SCCR_B_DFNH 1]
— USIU_SCOR_B_DFKL i
L USIU_SCCR_B_ERDF i
4 | -l

Status |
OE :

Walidate Configuration I Close |

MPC555 Resource Configuration Window

This figure shows the MPC555 Resource Configuration window for a
model that has active configurations for MPC555, MIOS1, QADC, and
TouCAN.

The MPC555 Resource Configuration window consists of the following
elements:

MPC555 Resource Configuration

® Active Configurations panel: This panel displays a list of currently
active configurations. To edit a configuration, click on its entry in the
list. The parameters for the selected configuration then appear in the
System configuration panel.

To link back to the library associated with an active configuration,
right-click on its entry in the list. From the pop-up menu that
appears, select Go to library.

To see documentation associated with an active configuration,
right-click on its entry in the list. From the popup menu that
appears, select Help.

¢ System configuration panel: This panel lets you edit the
parameters of the selected configuration. The parameters of each
configuration type are detailed in “MPC555 Resource Configuration
Window Parameters” on page 5-36.

Note There is no Apply or Undo functionality in the System
configuration panel. All parameter changes are applied
immediately.

® Status panel: The Status panel displays error messages that may
arise if resource allocation conflicts are detected in the configuration.

¢ Validate Configuration button: After you edit a configuration,
you should always click the Validate Configuration button to
check for resource allocation conflicts. For example, if both TouCAN
modules A and B are assigned to interrupt level IRQ 1, the Validate
Configuration process will detect the conflict and display a warning
in the Status panel.

Note that the Validate Configuration button does not validate the
entire model; it only checks for resource allocation conflicts related to
the selected configuration. To detect problems related to the model
as a whole, select Update diagram (Ctrl+D) from the Simulink®
Edit menu.

5-35

MPC555 Resource Configuration

5-36

® Close button: Dismisses the window.

MPC555 The sections below describe the parameters for each type of
Resource configuration in the MPC555 Resource Configuration window. The
conﬁguraﬁon default parameter settings are optimal for most purposes. If you want
Window to change the settings, we suggest you read the sections of the MPC555

P User’s Manual referenced below. You can find this document at the
arameters following URL.:

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

System Configuration Parameters

-._.i MPLC555 Resource Configuration ;IE'EI

Active Configurations | Systern Configuration |
mpE;E.ﬁﬁ.jri'...'er':;; — CLEOUT 20000000.0
— Oscillator_Frequency 200000000
— RT_OMESTEF_IRGQ_LEVEL ;l INT_LEWELD
— System_Clock 200000000
— System_Frequency 400000000
— USIU_PLPRCR_B_ONF 1]
— USIU_PLPRCR_B_MF]
— USIU_SCCR_B_DFRH 1]
— UBIU_SCCR_B_DFRNL]
— USIU_SCCR_B_EBDF 1]
1| | i
Status |
0K :
Yalidate Configuration | Close |

RT _ONESTEP_IRQ_LEVEL
The rt_OneStep function is the basic execution driver of all
programs generated by the Target Support Package FM5
product. rt_OneStep is installed as a timer interrupt service

http://www.freescale.com/files/microcontrollers/doc/user_guide/MPC555UM.pdf

MPC555 Resource Configuration

routine; it sequences calls to the model step function. The
RT_ONESTEP_IRQ_LEVEL parameter lets you associate
rt_OneStep with any of the available IRQ levels (0..7). Do not
select Interrupts Disabled, or the model will not work.

See the "Data Structures and Program Execution" section in the
Real-Time Workshop® Embedded Coder™ documentation for a
detailed description of the rt_OneStep function.

System Clock and Related Parameters
The parameters Oscillator_Frequency, USIU_PLPRCR_B_DIVF,
USIU PLPRCR_B_MF, USIU_SCCR_B_DFNH, USIU_SCCR_B_DFNL,
USIU_SCCR_B_EBDF in the MPC555 group control the speed of
the main clocks in the MPC555. Refer to section 8, "Clocks and
Power Control," in the MPC555 User’s Manual for information
on these settings.

Some pre-defined configurations may be applied by inserting the
block Switch Target Hardware Configuration into your model.
This block is found in the Utilities sublibrary of the MPC555
Driver Library, see Switch Target Configuration. Insert this
block in your model, then double-click on the block to choose a
configuration from the available list. When one of the pre-defined
configurations is selected, the appropriate settings will be applied
automatically.

Note the Target Support Package FM5 product only supports
an Oscillator_Frequency of 4 MHz or 20 MHz; the setting of
this parameter must correspond to the crystal frequency on your
target hardware.

You might want to change these parameters in order to allow a
different system clock value to be used; a faster system clock will
increase the processing performance, as well as increasing power
consumption. With default settings, the default values result in
a system clock of 20 MHz for the MPC555. To gain additional
processing power it may be desirable to increase the system clock.

5-37

MPC555 Resource Configuration

For the MPC555, the system clock may be increased up to 40
MHz. The exact settings that are required to achieve a desired
system clock value may be calculated using the formulae provided
in the MPC555 User Documentation. For example

System clock = Oscillator Frequency * (MF+1)/(DIVF +1)

— where MF is the multiplying factor USIU_PLPRCR_B_MF and
DIVF is the dividing factor USIU_PLPRCR_B_DIVF.

For example, if your hardware uses an external oscillator
frequency of 20 MHz (e.g. as used on a phyCORE-MPC555
board), then changing the value of USIU_PLPRCR_B_MF from 0 to 1
will increase the system clock from 20 to 40 MHz. For different
external oscillator frequencies or different processor variants you
should consult the user documentation for your hardware.

QADC64 Configuration Parameters

<} MPC555 Resource Configuration

=10lx|

Active Configurations | GADCES Configuration

QADC_A

— Mlultiplex_Mode

— Prescaler_Clock_High_Time
— Prascaler_Clock_Low_Time
QADC_B

— Multiplex_Mode

— Prescaler_Clock_High_Time
— Prescaler_Clock_Low_Time

mpcsasdrivers

mpcaasdriv

sifueued Analog-Td

4] | r

MPCAasadkConfig GADCES_PROPS

j 0 = Internally multiplexed @ 16 passible channels
7
7
MPCaaadkCanfig. GADCES_PROPS

;I 0= Internally multiplexed : 16 possible channels
7
7

Status

0E =

=

(04 | Apply | Help |

5-38

The Queued Analog-To-Digital Converter Module 64 (QADC64)

Configuration parameters configure the QADC64 operational mode and

supports the blocks in the QADC sublibrary.

MPC555 Resource Configuration

The QADC64 performs 10 bit analog to digital conversion on an input
signal. Currently the blocks in this library support only the continuous
scan mode of operation. In continuous scan mode, the QADC64 is set to
run, and then continuously acquires data into its result buffer. Input is
double buffered, so the model can read the result buffer at any time to
get the latest available signal data.

The MPC555 has two QADC modules, QADC_A and QADC_B. You
can program these individually. By default each QADC module has 16
input channels. By attaching an external multiplexer to three of the
analog input pins, you can increase the number of possible channels
to 41. These pins become outputs from the processor and can act as
inputs to an analog multiplexer. The Multiplex Mode parameter
determines whether the QADC64 operates in internally or externally
multiplexed mode.

Refer to section 13, "Queued Analog-to-Digital Converter Module-64," in
the MPC555 User’s Manual for detailed information about the QADC64.

In general, you should not need to change any of the settings of the
parameters described below from their defaults. The other parameters
are advanced settings. Refer to section 13, "Queued Analog-to-Digital
Converter Module-64," in the MPC555 User’s Manual for information
on these settings.

Multiplex Mode
Configures the QADC64 for internally or externally multiplexed
mode by setting the MUX bit. The MUX bit determines the
interpretation of the channel numbers and forces the MA[2:0] pins
to be outputs. Valid settings are

® 0 = Internally multiplexed : 16 possible channels
® 1 = Externally multiplexed : 41 possible channels

Prescaler Clock High Time
Prescaler clock high (PSH) time. The default is 7. The PSH field
selects the QCLK high time in the prescaler. PSH value plus 1
represents the high time in IMB clocks.

5-39

MPC555 Resource Configuration

5-40

Prescaler Clock Low Time

Prescaler clock low (PSL) time. The default is 7. The PSL field

selects the QCLK low time in the prescaler. PSL value plus 1
represents the low time in IMB clocks.
QADCG64E Configuration Parameters
=10 X

| Active Configurations [{ @ADCE4E Configurstion |
HrpCSSSvers = QADCE_A MPCEa5dkConfig. GADCE4E_PROFPS
; ersiEnhanced Gueued &) Multiplex_Maode ;I 0 = Internally multiplexed : 40 possible channels
GCLE_Actual_Freguency 2000000.0
QCLK_Desired_Frequency 2000000.0
QCLK_Prescaler g
QADCE_B MPCEa5dkConfig GADCE4E_PROPS
KN 2
Status:
4 | E
Ok | Apply | Help |

The Enhanced QADC functions are for MPC56x processors — you will

see an error message if you try to configure these for an MPC555.

Use

QADC blocks for an MPC555; for an MPC56x set your target processor
accordingly in the Target Preferences and then you can use the QADCE

blocks.

The Enhanced Queued Analog-To-Digital Converter Module 64
(QADC64E) Configuration parameters configure the QADC64E

operational mode and supports the blocks in the Enhanced QADC

sublibrary.

Multiplex Mode

Configures the QADC64 for internally or externally multiplexed

mode by setting the MUX bit. The MUX bit determines the

interpretation of the channel numbers and forces the MA[2:0] pins

to be outputs. Valid settings are

MPC555

Resource Configuration

°* 0

° 1

QCLK Desired_Frequency

Internally multiplexed : 40 possible channels

Externally multiplexed : 65 possible channels

Set the Q clock frequency you want here. The
QCLK_Actual Frequency field displays the true value
achieved. QCLK_Actual Frequency and QCLK Prescalar are
read only fields for information.

MIOS1 Configuration Parameters

_ioi
| Active Configurations [{ MI0=1 Configuratian |
mpcsssdrivers — CounterClock 1250000.0
sivodular Inputifoutput ELIetENY | | Freeze_Enable [& True
= Modulus_Counter_22 MPCAas5dkConfig.MIOS_C
Clock_Freguency 4882112

Clock_Prescaler
Clack_Select
Freeze_Enable

[+ Modulus_Counter_B
— Prescaler
— Prescaler_Enahle

d|

Modulus_Latch_Register a
Modulus_Load_Sensitivity ;IDisabled

0
;I MMCEM Clock Prescaler

W True

MPCa55dkConfiy MIOS_C

i}
[True
| 2]

Status

0 :

Validate Configuration | Close |

CounterClock

The MIOS counter clock is generated by the MIOS counter
prescaler submodule. The MIOS counter clock drives the other
MIOS1 submodules. The value shown for the counter clock is
calculated automatically as the system clock frequency divided

by the prescaler value.

5-41

MPC555 Resource Configuration

Freeze Enable
This allows all counters on the MIOS1 to be frozen when the
processor is stopped in debug mode. Note that this is in addition
to the Freeze Enable setting for individual submodules on the
MIOS1. To allow the counters on a particular submodule to be
stopped, select Freeze enable here, and select Hold output
when at debug break point (freeze enable) in the block
parameters associated with the submodule (e.g., MIOS Pulse
Width Modulation block or MIOS Waveform Measurement block).

Modulus Counter 6 and 22
These two counters provide reference clocks to submodules such
as the MIOS Pulse Width Modulation Submodule and the MIOS
Double Action Submodule (Frequency / Period measurement)
subsystems. If you change the Clock Select to anything other
than MMCSM Clock Prescaler, the MIOS Pulse Width Modulation
and MIOS Waveform Measurement blocks will not work as
expected. To change the clock frequency and hence the available
resolution of pulse width modulation and waveform measurement,
change the Clock Prescaler to a value between 0 and 255.

Refer to section 15.10, "MIOS Modulus Counter Submodule

(MMCSM)," in the MPC555 User’s Manual for information on
these settings.

5-42

MPC555 Resource Configuration

TouCAN Configuration Parameters

=k
| active Configurations [{ TOUCAN Configuration |
mpcSSSdrivers - CAN_A MPCE54dkConfig. TOLICAN_PROPS
! IRG_Level | iNT_LEVELY
= Masks MPCE5adkConfig TOUCAN_MASKS
— Glohal_R¥_Mask Liiniiid
— Mask_RX_14 iiuiiid
— Mask_FEX_15 i
— hask_Type :IE}dended Message
- Timing MPCESAMKConfg. TOLICAN_TIMING
— CAM_Bit_Rate A00000.0
— Mumber_Of_Quanta 20
— Resychronization_Jump_Width 4
— Sample_Point 0.81
— Transmmit_Rueue_Length 16
— Transmit_Shared_Buffers ;IThree TouCAN buffers
[CAR_B MPCE5adkConfig TOUCAN_PRORPS
- CAN_C MPC55adkConfig. MotAvailable
ASt'atus |
0K : -
|
9].4 | Apply | Help |

The parameters listed below are the same for TouCAN modules A and B
(and C, for MPC56x). Consult Section 16 of the MPC555 User’s Manual
before editing the TouCAN configuration parameter defaults.

IRQ Level
The transmit queue for each TouCAN module requires a processor
interrupt to run. Select an interrupt level (0-31) that is not used
by any other device. Use the Apply button to make sure you
do not select an interrupt level that is already in use. Do not
disable interrupts: this will stop the TouCAN Transmit block
from working correctly.

5-43

MPC555 Resource Configuration

5-44

Mask Configuration Parameters

Global RX Mask
Buffers 0-13 use this mask. Setting a bit to 0 in the mask causes
the corresponding bits in the incoming message’s identifier to
be masked out (i.e., ignored).

0 — Corresponding bit in the incoming message’s identifier is
"don’t care"

1 — Corresponding bit in the incoming message’s identifier is
checked against the identifier specified in the TouCAN Receive
block associated with this buffer.

Mask RX 14
Same as Global RX Mask, but the mask applies only to buffer 14.

Mask RX 15
Same as Global RX Mask, but the mask applies only to buffer 15.

Mask Type
Specify whether the buffer masks are Standard or Extended
frame IDs. If you want to receive Extended Frames in your model,
you should set the Mask Type to Extended Message. The mask
type option tells the compiler how to map the bits specified in
the mask options to the bits in the hardware. The decision as to
whether a message is a Standard or Extended frame is defined
on a per message buffer basis.

Timing Configuration Parameters
CAN Bit Rate
Enter the desired bit rate. The default bit rate is 500000. 0.

Number of Quanta
The number of TouCAN clock ticks per message bit.

Resynchronization Jump Width
The maximum number of clock ticks that the TouCAN device
can resynchronize over when it detects that it is losing message
synchronization.

MPC555 Resource Configuration

Sample Point
The point in the message where the TouCAN tries to sample the
value of the message bit, between 0 and 1.

Slew Rate
You cannot select the slew rate for the TouCAN modules. By
default, the slow slew rate is selected for the TouCAN modules.
This results in a slew rate of 50ns for TouCAN C, and 200ns for
the other modules.

Transmission Configuration Parameters

Transmit Queue Length
Length (number of messages) of the transmit queue. The transmit
queue holds messages that are waiting to be transmitted. An
increase in performance can be achieved by reducing the queue
length. However, if the queue’s length is too small it may become
full, causing messages to be lost.

Transmit Shared Buffers
Choose either Single TouCAN Buffer or Three TouCAN Buffers.
This parameter is used in conjunction with all TouCAN Transmit
blocks in the model for this TouCAN module that are operating in
Queued transmission with shared buffer mode. If you select
Single TouCAN Buffer, then all messages that are queued will
be transmitted via a single hardware buffer; in this case, it is
possible that a low priority message in the transmit buffer will
block higher priority messages that are in the queue. To avoid
this problem, use the option Three TouCAN Buffers. When three
buffers are used, the driver ensures that the message entered
into arbitration to be transmitted via the CAN bus is always the
highest priority message available; furthermore in this mode the
TouCAN module is able to transmit messages continuously by
re-loading hardware buffers that become empty while another
buffer is active transmitting.

5-45

MPC555 Resource Configuration

5-46

Time Processor Unit (TPU3) Configuration Parameters

<} MPC555 Resource Configuration

| active Configurations h

TPU Configuration

=101 |

rpcosadriver s

- TPU_A

MPCE55dkConfiy TPU_PROFPS

|»

Ok | Apply | Help |

Tifd — Emulation_Mode :IUSE Emulation Mode {1}
iS5 Stoucan — IR@_Lewel :I INT_LEVEL1O
— Memory_Bank_Select :IBankD
= TR MPCasadkCanfig TRU_TCR1
Enhanced_Prescaler_Divide :I PIiA
Enhanced_Prescaler_Enahle :] Digable enhanced prescaler ()
Standard_Prescaler_Divide :I IME Clock 32 (0)
TCR1P_Divide :I Prescaler Clock (1
TCR1_Clock_Frequency B2a000.0
TPUMCR2_DINZ2 :l Usze Prescalers (0)
F-TCR2 MPCassdkConfig TPU_TCRZ
[+ TPL_BE MPCaaadkCanfig TRU_PROPS
- TRPU_C MPCE5adkConfig. Motdvailable
= TPLI_Emulation MPCaaadkCanfig TPU_EMULATION_FCMNE
- TRU_DPTRARM_AB MPCAsadkConfig TPLU_DPTRAM
TPU_EMU_Mask_File mpchxsg.s19
TRU_EMU_Mask_Full_File DAMATLAR S andhoxTargetsimatiabitoolb oxirbwitargets
TRU_EMU_S190ownload :l Download custom code
TPU_Function_Mask_Bank_0 MPCE5adkConfig TPLU_EMULATION_FCR_MUMS
TPU_Function_Mask_Bank_1 MPCaaadkConfig TRU_EMULATION_FCRH_MNUMS
TPU_Function_Mask_Bank_2 MPCE5adkConfig TPLU_EMULATION_FCR_MUMS —
il | ﬂ F—TPU_DPTRAM_C MPCaaadkConfig Motévailable j
‘St'atus |
OE

Emulation_Mode
The default is to Use ROM TPU Functions (0). Select Use
Emulation Mode (1) to use downloaded TPU functions in
DPTRAM. Use the parameters under TPU_Emulation to
configure downloads for emulation mode. For an example see the
demo model mpc555rt_tpu_emu. Note that CCP Program_Prepare

MPC555 Resource Configuration

downloads will fail because DPTRAM_AB contains TPU microcode
for emulation mode.

IRQ_Level
This enables TPU interrupts. The default is disabled. If your
model contains any TPU3 Programmable Time Accumulator
blocks, you will need to choose an interrupt level.

Memory_Bank_Select
Select Bank 0, 1 or 2. If you select an invalid memory bank for the
TPU module (e.g. Bank 2 for TPU C) you will see an error message
when you click Apply. This must match the selection for the
parameters TPU_Function_Mask_Bank_0 (also Bank_1, Bank_2).

The TCR1 and TCR2 timebases are configurable for TPU Channels

A, B and C.

TCR1
The parameters under the TCR1 tree allow you full control to
specify the clock speed of the TCR1 timebase. Consult Section
17 of the MPC555 User’s Manual before editing the TPU
configuration parameter defaults. The parameters listed below
are the same for TPU modules A, B and C.

Enhanced_Prescaler_Divide
If you choose to use the Enhanced_Prescaler_Divide, then you
can choose to divide the IMB clock down by either 2, 4, 6, 8, ... ,
60, 62, 64.

Enhanced_Prescaler_Enable
Here you can choose whether you use the Standard Prescaler (set
by Standard_Prescaler_Divide) or the Enhanced Prescaler (set
by Enhanced_Prescaler_Divide) to derive the Prescaler Clock.

Standard_Prescaler_Divide
If you choose to use the Standard_Prescaler_Divide then you can
choose to divide the IMB clock down by either 32 or 4.

TCR1P_Divide
Whichever type of prescaler you choose (standard or extended),
there is a further prescaler that is applied to the clock.

5-47

MPC555 Resource Configuration

TCR1P_Divide divides the Prescaler Clock by 1, 2, 4, or 8. The
resulting clock is the TCR1 timebase.

TCR1_Clock_Frequency
Read-only field displaying calculated TCR1 clock frequency.

TPUMCR2_DIV2
TPUMCR2_DIV2 (the last setting under the tree) allows you to
choose to use a set of prescalers to divide the IMB clock down
further (Use Prescalers (0)), or to just divide the IMB clock by
two (IMB Clock / 2 (1)). If you choose the divide by two option
then none of the other settings are applicable and are marked
N/A. Note this is the last setting purely because the parameters
are laid out in alphabetical order.

TCR2
The parameters under the TCR2 tree for specifying the clock
speed of the TCR2 timebase are the same for TPU modules A, B
and C. You can configure the TCR2 to use an external clock.

TCR2P_Divide
You can choose to divide the TCR2 prescaler clock down by either
1, 2, 4, or 8.

TCR2_Clock_Frequency
Read-only field displaying calculated TCR2 clock frequency when
using the gated IMB clock. This field displays zero when using an
external clock, as it cannot predict an external clock signal.

TCR2_Counter_Clock_Source
Select from Rise transition T2CLK, Gated IMB clock, Fall
transition T2CLK, or Rise & fall transition T2CLK.

The Gated IMB clock setting uses the T2CLK pin to gate the
internal clock as a source for TCR2 (a logical AND between the
input on the T2CLK pin and the IMB clock is performed).

The other settings allow TCR2 to be clocked from the selected
edge of an external clock signal applied to the T2CLK pin.

5-48

MPC555 Resource Configuration

TCR2_PSCK2
See the MPC555 User’s Manual for the effects of setting
the TCR2_PSCK2 bit. The default, Divide by 1, leaves the
TCR2P_Divide setting the only prescaler applied to the clock (if
using an external clock). If using the gated IMB clock there is
always an additional implicit divide by 8.

TPU_Emulation
Use these settings to configure downloads for TPU emulation
mode.

TPU_DPTRAM_AB and TPU_DPTRAM_C
Use the settings under these two parameters to configure
emulation mode for TPU modules A and B (TPU_DPTRAM_AB)
and/or TPU modules C (TPU_DPTRAM_C). The parameters
listed below are the same for TPU modules A, B and C.

TPU_EMU_Mask_File
Enter the name of the S19 file containing the TPU functions to
be downloaded. The specified file must be either in the current
working directory OR the MATLAB® path if an absolute path is
not explicitly specified. Note the file name will not be accepted
unless TPU_EMU_S19Download is set to Download custom
code. This parameter retains a memory of the last file specified.

The S19 file must be produced from an .asc microcode mask file
and a TPU microcode assembler. The TPU function names and
TPU function numbers are specified in the .asc file. Make sure
you enter the same TPU function names and numbers in the
TPU_Function_Mask_Bank parameters.

TPU_EMU_Mask_Full_File
Read only field displaying the full path to the download file.
Check this to ensure the correct file is shown.

TPU_EMU_S19Download
Select Download custom code to download to DPTRAM for
emulation mode. The default is No code download.

5-49

MPC555 Resource Configuration

5-50

TPU_Function_Mask _Bank_0 (also Bank_1, Bank_2)
Use the parameters under here to specify which TPU Function
Numbers correspond to which TPU functions. For example, typing
PTA for TPU_Function_D will specify that the PTA function is
configured as TPU function number 13. If you enter a string that
is not a valid TPU function name, when you click Apply an error
message appears in the status field, followed by a list of possible
TPU Function Names and their corresponding full function
names. Names must be exact including case. The specified TPU
function names and numbers must correspond to those specified
in the TPU_EMU_Mask_File.

Serial Communications Interface (SCI) Configuration
Parameters

i
Active Configurations {1 scl Configuration |
mpcasadrivers | = 5CNH MPa55dkConfig. OSMCM_

I'rlp|::5.':'|5dri'-.-'E i N — Bit_rate_achieved 9515.385

| | Bit_rate_ideal 9500.0
— Loophack mode :_l Standard transmitreceive

— SCI_mode_control = 8-hit data
— SCI_parity_selestion w| niA

IJ;I— SC12 MPCaa5dkConfig. QSMCh_
— Bit_rate_achieved 96145.385
— Bit_rate_ideal QF00.0
— Laophack:_mode :l Standard transmitireceive

— SCI_mode_control ;I B-hit data
— SC|_parity_selection :_l Py

i

Status |
0E

olis | Apply | Help |

MPC555 Resource Configuration

Bit_rate_achieved
This read-only field shows the achieved serial interface bit rate.
In general this value differs slightly from the requested bit rate,
but is the closest value that can be achieved by setting allowed
values in the MPC555 registers SCC1R0 and SCC2R0 for QSMCM
submodules SCI1 and SCI2 respectively.

Bit_rate_ideal
Enter the desired bit rate for serial communications in this field.
Appropriate register settings will be calculated automatically. You
can check the actual bit rate in the Bit_rate_achieved field.

Loopback_mode_enable
Select either Standard transmit/receive or Loopback mode
enabled. The loopback mode may be useful for test purposes
where the serial interface is required to receive data that it
transmitted itself.

SCI_mode_control
Select the desired combination of word length and parity/no parity.

Parity_selection
If parity is enabled, you must select 0Odd parity or Even parity.

5-51

QADC Analog In

5-52

Purpose
Library

Description

Analog In
[QADC_A)

QADC Analeg In

Dialog
Box

Input driver enables use of Queued Analog-Digital Converter (QADC64)
in continuous scan mode

Target Support Package FM5/ MPC555 Driver Library/ Queued
Analog-To-Digital Converter Module-64

The QADC Analog In block sets the QADC64 into continuous scan
mode. It then samples the specified channels at the specified rate. In
continuous scan mode, the analog-to-digital converter is scanned as fast
as possible, at a rate much faster than the sample rate of the model.
Using continuous scan mode ensures that your application will obtain
the latest signal value.

The MPC555 has two QADC modules, A and B. You can program these
individually. You can place only one instance of the QADC Analog In
block per module in your model or subsystem.

[F]source Block Parameters: QADC Analog In |

—MPCEES &nalog Input [AADCES, Continuous-scan] [mask] (link]

Analog input uzing one of the Dueued Analag Digital Converter [QADCE) modules.
The moduls is operated in continuous-scan mode.

Specifying channel numbers:

- In hoterultiplexed mode, zpecify the channels az a vector of numbers from [0..3,
43..59]. comeponding to ping AMO_ANS and AN48.ANGS.

- In multiplexed mode see the table in the documentation,

—Parameters
Q4D module: ESG——GEGGGGG—
Channels:

|[U12348495051]

Justification:l Right-justified [unsigned) LI

Sample time:
Joa

(] I Catcel Help

QADC Analog In

Channel
Number
Selection

QADC module
Select module A or B.

Channels
A vector of numbers representing channels to be scanned. See
“Channel Number Selection” on page 5-53 below.

Justification
Converted data is read from the 10-bit wide QADC64 result word
table into a 16-bit word. Data from the result word table can be
accessed in three different formats. The Justification menu
selects from the following formats:

® Right-justified (unsigned): with zeros in the higher order
unused bits.

e Left-justified (signed): with the most significant bit
inverted to form a sign bit, and zeros in the unused lower order
bits. In this mode, zero is treated as the half scale of the input
range.

e Left-justified (unsigned): with zeros in the unused lower
order bits.

Refer to section 13.13, in the "Queued Analog-to-Digital Converter
Module-64" section of the MPC555 User’s Manual for further
information.

Sample time
Block sample time; determines sample rate at which the port is
monitored.

A channel number in the Channels vector selects the input channel
number corresponding to the analog input pin to be sampled and
converted. The analog input pin channel number assignments and the
pin definitions vary, depending on whether the QADC64 is operating
in multiplexed or nonmultiplexed mode. The queue scan mechanism
makes no distinction between an internally or externally multiplexed
analog input.

5-53

QADC Analog In

The following two tables show the mapping between the channel
numbers and the hardware pins for the two scanning modes
(multiplexed and nonmultiplexed).

For example, in nonmultiplexed mode, to scan all 16 channels of the
QADC64 you would specify the following vector in the Channels field:

[01 23 48 49 50 51 52 53 54 55 56 57 58 59]

Nonmultiplexed Scan Mode

Port Pin Pin Type | Channel
Name Analog Pin Name | (1/0) Number
PQBO A_ADO/ANO I 0

PQB1 A_AD1/AN1 I 1

PQB2 A_AD2/ AN2 I 2

PQB3 A_AD3 /AN3 I 3

PQB4 A_AD4/ AN48 I 48

PQB5 A_AD5/ AN49 I 49

PQB6 A_AD6 / AN50 I 50

PQB7 A_AD7/AN51 I 51
PQAO A_AD8/ ANbH2 /0 52

PQA1 A_AD9/ AN53 /0 53

PQA2 A_AD10/AN54 /0 54

PQAS3 A_AD11/AN55 /0 55

PQA4 A_AD12/ AN56 /0 56

PQA5 A_AD13/ AN57 /0 57

PQA6 A_AD14 / AN58 /0 58

PQA7 A_AD15/ AN59 /0 59

5-54

QADC Analog In

Multiplexed Scan Mode

Port Pin Analog Pin Pin Type | Channel
Name Name (1/0) Number
PQBO A _ADO/ANw I 0-14 even
PQB1 A_AD1/ANx I 1-15 odd
PQB2 A_AD2/ ANy I 16—30 even
PQB3 A_AD3/ ANz I 17-31 odd
PQB4 A_AD4 / AN48 I 48

PQB5 A_AD5/ AN49 I 49

PQB6 A_AD6 / AN50 I 50

PQB7 A_AD7/AN51 I 51

PQA3 A_AD11/AN55 I/0 55

PQA4 A_AD12/ AN56 I/0 56

PQA5 A_AD13/ AN57 I/0 57

PQA6 A_AD14 / AN58 I/0 58

PQA7 A_AD15/ AN59 /0 59

Note PQAO, PQA1 and PQA2 (corresponding to channels 52-54)
are used as output pins (MAO, MA1, and MA2) to drive an external

demultiplexer.

5-55

QADC Digital In

5-56

Purpose
Library

Description

Lrigital In
[(QADC_A)

LQADC Digital In

Dialog
Box

Input driver enables use of Queued Analog-Digital Converter (QADC64)
pins as digital inputs

Target Support Package FM5/ MPC555 Driver Library/ Queued
Analog-To-Digital Converter Module-64

The QADC Digital In block allows you to treat the QADC64 pins as
digital inputs. Each QADC64 module has two 8-bit ports, A and B. You
can use any bit on either port as a digital input.

E! Source Block Parameters: QADC Digital In x|

—MPCEES Digital [nput [GA0CES) (mask] [link)
Digital input uzing ohe of the Dueued Analog Digital Converter [BADCES] modules.

Specify the bits you want to read az a wector of numbers from [0, 7). Depending on
the: selected port, the bits entered corespond to pins:

- POA0.POAT [Port A

- PUBO.PQET [Port B]

—Farameters

GADC module: NG -
F'Drt:l I j
Bits:

Jio1za

Sample time:
Jo1

0K I Cancel Help

QADC module
Select module A or B.

Port
Select an 8 bit port (A or B) on the module.

QADC Digital In

Bits

A vector of bits (numbered 0-7) to read. The vector should not
be longer than eight elements.

Sample time
Block sample time; determines sample rate at which the port is

monitored.

Mapping Bits To Hardware Pins

Use this table to work out how the block ports and bits map to processor

pins on the MPC555.

Relationship of Port/Bit Parameters to Hardware Pins

v
(]
=
-

Bit

Hardware Pin

A_ADO/PQBO

A _AD1/PQB1

A_AD2/PQB2

A_AD3/PQB3

A_AD4/PQB4

A_AD5/PQB5

A_AD6 / PQB6

A_AD7/PQB7

A_ADS8/PQAO

A_AD9/PQA1

A_AD10/PQA2

A_AD11/PQA3

A _AD12 /PQA4

e i e o -l ov B e~ el o B o~ Bl e~ I e B

B | W IN (RO |0 x| W[N] O

A_AD13 / PQA5

5-57

QADC Digital In

Relationship of Port/Bit Parameters to Hardware Pins

(Continued)

Port Bit Hardware Pin
A 6 A_AD14 / PQA6
A 7 A_AD15 / PQA7

5-58

QADCE Andalog In

Purpose
Library

Description

Analag In
(QADCE_A)

QADCE Analag In

Dialog
Box

Input driver enables use of Queued Analog-Digital Converter (QADC64)
in continuous scan mode on MPC56x (561-6)

Target Support Package FM5/ MPC555 Driver Library/ Enhanced
Queued Analog-To-Digital Converter Module-64

The QADCE Analog In block sets the QADC64E into continuous scan
mode. It then samples the specified channels at the specified rate. In
continuous scan mode, the analog-to-digital converter is scanned as fast
as possible, at a rate much faster than the sample rate of the model.
Using continuous scan mode ensures that your application will obtain
the latest signal value.

The MPC56x has two QADC64E modules, A and B. You can program
these individually. You can place only one instance of the QADCE
Analog In block per module in your model or subsystem.

[Z1Block Parameters: QADCE Analog In 2xl
—MPLCHEE Analog Input [Enhanced DADCES, Continuous-scan) [mazk] (link)

Analog input using one of the Queued Analog Digital Converter [JADCE4] modules.
The module iz operated in continuous-zcan mads.

Specifying channel nurmbers:

- In non-multiplexed mode, specify the channels as a vector of numbers from [44..59,
B4..87]. coreponding to pinz AMN44. AN5S and ANES. AMBT.

- In multiplexed mode zee the table in the documentation.

—Farameters

OADCE module: | & |

Chantels:
|[44 45 45 47 G4 BREE |

Juztification; | Right-justified [unsigned) LI
Sample time:
[if]

ok I LCancel Help Apply

QADC module
Select module A or B.

5-59

QADCE Andalog In

Channels

A vector of numbers representing channels to be scanned. A
channel number in the Channels vector selects the input channel
number corresponding to the analog input pin to be sampled and
converted.

The analog input pin channel number assignments and the pin

defini

tions vary, depending on whether the QADC64E is operating

in multiplexed or nonmultiplexed mode. The queue scan mechanism
makes no distinction between an internally or externally multiplexed
analog input.

In nonmultiplexed mode, specify a vector of numbers from [44..59
64..87] corresponding to pins AN44..AN59 and AN64..AN8&7.

See the table following for the mapping in multiplexed mode between
the channel numbers and the hardware pins.

Justification

Converted data is read from the 10-bit wide QADC64E result
word table into a 16-bit word. Data from the result word table can
be accessed in three different formats. The Justification menu
selects from the following formats:

Right-justified (unsigned): with zeros in the higher order
unused bits.

Left-justified (signed): with the most significant bit inverted
to form a sign bit, and zeros in the unused lower order bits. In this
mode, zero is treated as the half scale of the input range.

Left-justified (unsigned): with zeros in the unused lower
order bits.

Sample time

5-60

Block sample time; determines sample rate at which the port is
monitored

QADCE Andalog In

Mapping Bits To Hardware Pins

Use the following table to work out how the block ports and bits map to

processor pins on the MPC565 in multiplexed mode.

In summary

® No multiplexing:

channels available 44-59 and 64-87

® A only multiplexing:
channels available 0-31; 48-51; 55-59; 64-87

* B only multiplexing:
channels available 0-31; 48-59; 64-71; 75-87

® A and B multiplexing:

channels available 0-31; 48-51; 55-59; 64-71; 75-87

Multiplexed Scan Mode

Port Pin Analog Pin Other Pin Type Channel
Name Name Functions (1/0) Number
ANw/A_PQBO ANO0O to ANO7 - Input Oto 7
ANx/A_PQB1 ANO8 to AN15 | - Input 8 to 15
ANy/A_PQB2 AN16 to AN23 > Input 16 to 23
ANz/A_PQB3 AN24 to AN31 | - Input 24 to 31
A_PQBO AN44 ANw Input/Output 44
A_PQB1 AN45 ANx Input/Output 45
A_PQB2 AN46 ANy Input/Output | 46
A_PQB3 ANA47 ANz Input/Output 47
A_PQB4 AN48 - Input/Output | 48

5-61

QADCE Andalog In

5-62

Multiplexed Scan Mode (Continued)

Port Pin Analog Pin Other Pin Type Channel
Name Name Functions (1/0) Number
A_PQB5 AN49 = Input/Output 49
A_PQB6 AN50 - Input/Output 50
A _PQB7 AN51 - Input/Output 51
A_PQAO ANb52 MAO Input/Output 52
A_PQA1 AN53 MA1 Input/Output 53
A_PQA2 AN54 MA2 Input/Output 54
A PQA3 AN55 = Input/Output 55
A _PQA4 AN56 - Input/Output 56
A PQA5 AN57 = Input/Output 57
A_PQA6 AN58 - Input/Output 58
A _PQA7 AN59 = Input/Output 59
B_PQBO AN64 = AMUX Input 64
B_PQB1 ANG65 - AMUX Input 65
B_PQB2 ANG66 = AMUX Input 66
B _PQB3 ANG67 = AMUX Input 67
B_PQB4 ANG68 = AMUX Input 68
B _PQB5 ANG69 = AMUX Input 69
B_PQB6 AN70 = AMUX Input 70
B _PQB7 ANT1 - AMUX Input 71
B_PQAO AN72 MAO AMUX Input 72
B_PQA1 AN73 MA1 AMUX Input 73
B_PQA2 AN74 MA2 AMUX Input 74

QADCE Andalog In

Multiplexed Scan Mode (Continued)

Port Pin Analog Pin Other Pin Type Channel
Name Name Functions (1/0) Number
B_PQA3 ANT5 s AMUX Input 75
B_PQA4 AN76 > AMUX Input 76
A_PQA5 ANT7 s AMUX Input 77
A_PQA6 AN78 > AMUX Input 78
A_PQA7 ANT9 s AMUX Input 79
= ANSO > = 80
= ANS81 - - 81
= AN8&2 > = 82
= AN83 s - 83
= ANS84 > = 84
= ANS85 s - 85
= ANB86 > = 86
= ANS87 s - 87

In this table, MAO to MA2 indicates these pins (A_ and B_PQAO-2) are

used as output pins to drive an external demultiplexer.

5-63

QADCE Digital In

Purpose
Library

Description

Ligital In
(QADCE_A)

RARCE Digital In

Dialog
Box

5-64

Input driver enables use of Queued Analog-Digital Converter (QADC64)
pins as digital inputs on MPC56x (561-566)

Target Support Package FM5/ MPC555 Driver Library/ Enhanced
Queued Analog-To-Digital Converter Module-64

The QADCE Digital In block allows you to treat the QADC64E pins as
digital inputs. Each QADC64E module has two 8-bit ports, A and B. You
can use any bit on either port as a digital input.

[Z]Block Parameters: QADCE Digital In i d |
—MPLCEES Digital Input [Enhanced QADCES] [mazk] (link)

Diigital input uzing ohe of the Queusd Analog Digital Converter [DADCE4] madules.
Specify the bitz you want to read az a vector of nurmbers from [0..7]. Depending on the
selected port, the bits entered comespond to pins:
- POAD.POAT [Paork A)
-PGUBO.PQBT [Port B]
— Parameters
QADC moduie: [EAEG—G——G—G————GG———————————— -
Part: I & j
Bits:
o1z
Sample time:
Jor
(0].4 I LCancel Help Lpply
QADC module

Select module A or B.

Port
Select an 8 bit port (A or B) on the module.

QADCE Digital In

Bits
Specify a vector of bits (numbered 0-7) to read. The vector should
not be longer than eight elements. Depending on the selected
port, the bits entered correspond to pins PQAO to PQAT7 (port A)
or PQBO to PQB7.

Sample time
Block sample time; determines sample rate at which the port is
monitored

5-65

Serial Receive

5-66

Purpose

Library

Description

Len

oM [rata

Receive pym

T

Serial Receive

Configure MPC555 for serial receive on either of QSMCM submodules
SCI1 or SCI2

Target Support Package FM5/ MPC555 Driver Library/ Serial
Communications Interface (SCI)

The Serial Receive block receives bytes via either of the MPC555
QSMCM submodules SCI1 or SCI2. It requests either a fixed number of
bytes to be received, or, by enabling the first input, a variable number
of bytes can be requested each time this block is called. When the
block is called, the requested number of bytes are retrieved from a
hardware buffer provided by the submodule SCI1 or SCI2. On SCI1,
the total size of the buffer is 16 bytes; note however that the effective
capacity is reduced due to the hardware behavior and the circular mode
of buffer operation used by the software driver. You should design your
application on the basis of 9 bytes for the maximum buffer size for SCI1.
On SCI2, the size of this buffer is 1 byte.

If the buffer contains fewer bytes than the number requested, these
bytes are pulled from the buffer and made available at the block
output. The number of bytes actually retrieved from the buffer is made
available at the second output. This block will only retrieve bytes that
have already been received and placed in the hardware buffer; it will
never wait for additional data to be received.

To configure the serial interface bit rate and data format, see “Serial
Communications Interface (SCI) Configuration Parameters” on page
5-50.

The device driver used for the Serial Receive block does not require
the use of CPU interrupts.

Block Inputs and Outputs

The first input can be enabled so a variable number of bytes can be
requested each time.

The second input, if enabled, is a reset signal, which must have a
Boolean data type. You must reset the SCI1 module if an overrun error
or framing or parity error occurs. No reset is required for SCI2.

Serial Receive

Dialog
Box

The first output (marked Data) pulls bytes from the buffer — either the
number requested or the number available, whichever is the lower.
Note that the number requested is the value of the first input signal if
supplied, or the width of the output signal otherwise.

The second output (marked Num) is the number of bytes actually
retrieved from the buffer. Up to four outputs can be enabled — the third
showing framing error and parity error flags, and the fourth showing
overrun flags.

See “Data Type Support and Scaling for Device Driver Blocks” on page

1-30 for information on supported input/output data types and scaling
of input/output signals.

[=1Block Parameters: Serial Receive 2=l

—MPLCEES Serial Communications Interface Feceive [mazsk] (link]

Fieceive bytes aver the Serial Communications [nterface SCH or SCI2.

r—Parameter

SC1 madule: =

W Show requested number of bytes input part
b a=imumm number of bytes:

f1

[~ Show reset part

v Show actual number of bytes autput port

™ Show framing emor and parity emor lags
[~ Show overun flag:

Sample time:

{01

ak. | Cahicel | Help | Spply |

SCI module
Select either 1 or 2 (to choose module SCI1 or SCI2).

Show requested number of bytes input port
Enables an inport (the top one if there are two) where you can
input the number of bytes to request.

5-67

Serial Receive

Maximum number of bytes
Maximum number of bytes to receive (this is only visible if the
requested number of bytes input port is enabled). This sets an
upper limit on the number of bytes that will be read each time
the block is called.

Show reset port
Enables the reset input (the lower inport).

Show actual number of bytes output port
Enables another output that shows the number of bytes actually
read from the SCI buffer.

Show framing error and parity error flags
Enables another output. This output is zero if no framing or parity
error occurred during the current read; it is true (1) otherwise.
Note that for SCI1 only, a reset is required once a data overrun
has occurred.

Show overrun flag
Enables another output. This output is true (1) if a data overrun
occurred. Note that for SCI1 only, a reset is required once a data
overrun has occurred.

Sample time
The time interval between samples. To inherit the sample time,
set this parameter to -1. See "Specifying Sample Time" in the
Simulink® documentation for more information.

5-68

Serial Transmit

Purpose

Library

Description

[rata S0

Feq Transmit

Hum

Serial Transmit

Configure MPC555 for serial transmit, using one of QSMCM
submodules SCI1 or SCI2

Target Support Package FM5/ MPC555 Driver Library/ Serial
Communications Interface (SCI)

The Serial Transmit block transmits bytes via either of the MPC555
QSMCM submodules SCI1 or SCI2. You can use it either to transmit
a fixed number of bytes, or, by enabling the second input, transmit a
variable number of bytes each time this block is called. With SCI1, a
hardware buffer is used that allows up to 16 bytes to be queued for
transmission. With SCI2, the buffer allows only up to one byte to

be queued each time the block is called. Once bytes are queued for
transmit, they will be sent as fast as possible by the serial interface
hardware with no further intervention required by the rest of the
application.

If the hardware buffer is not empty when the block is called, i.e., the
previous transmission is not yet complete, then no new bytes will be
queued for transmit. This condition can be identified from the "actual
number of bytes" block output; if no bytes were queued for transmit,
this output returns zero.

To configure the serial interface bit rate and data format, see “Serial
Communications Interface (SCI) Configuration Parameters” on page
5-50.

The device driver used for the Serial Transmit block does not require
the use of CPU interrupts.

Block Inputs and Outputs

The first input contains the data to be transmitted; this input signal
may be either a vector or scalar with data type uint8. The optional
second input must be a scalar and may be used to control the number
of bytes transmitted. The number of bytes to transmit should not be
greater than the width of the first input signal.

The block output port "actual number of bytes output" gives the number
of bytes queued for transmit. If the previous transmission was complete,

5-69

Serial Transmit

this number will be equal to the requested number of bytes to transmit,
provided that this was less or equal to 16 in the case of SCI1, or 1 in
the case of SCI2. See “Data Type Support and Scaling for Device Driver
Blocks” on page 1-30 for information on supported input/output data
types and scaling of input/output signals.

Dialog B
Box —SCI Transmit [razk] [link]

Tranzmit byptes aver the Serial Communications Interface SCH or SCI2.

— Parameters

5t moce: [-

W Show requested nurnber of bybes input pork
v Show actual number of bytes autput part

Sample time:

[
(1] 4 I Cancel | Help | Apply |

SCI module
Select either 1 or 2 (to choose module SCI1 or SCI2).

Show requested number of bytes input port
Enable/disable the input for number of bytes to send. If cleared,
the number of bytes sent is just the width of the first inport; if
selected, the second input is enabled, which controls the number
of bytes to send.

Show number of bytes output port
Enable/disable the output port for number of bytes actually sent.
If selected, this value is available from the first output.

Sample time
The time interval between samples. To inherit the sample time,
leave this parameter at the default -1. See "Specifying Sample
Time" in the Simulink® documentation for more information.

5-70

Switch External Mode Configuration

Purpose
Library

Description

Configure model for external mode or executable building
Target Support Package FM5/ MPC555 Driver Library/ Utilities

Place the Switch External Mode Configuration block in your model and
double-click it to run a convenience function to configure your model for
building an executable or executing your model in external mode. When
you double-click the block, a dialog appears. Choose either Building an
executable or External mode, and click OK.

When you choose building an executable, messages at the command line
inform you the following steps are taken to configure your model:

1 Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). This is required for ASAP2
generation

2 Normal simulation mode is selected (in the Simulation menu, and
drop-down list in the toolbar).

3 ASAP2 is selected as the Interface (under Real-Time Workshop
> Interface, in the Data Exchange pane, in the Configuration
Parameters dialog box).

When you choose external mode, messages at the command line inform
you the following steps are taken to configure your model:

1 Inline parameters are selected (under Optimization in the
Configuration Parameters dialog box). This is required for external
mode.

2 External simulation mode is selected (in the Simulation menu, and
drop-down list in the toolbar).

3 External mode is selected as the Interface (under Real-Time
Workshop > Interface, in the Data Exchange pane, in the
Configuration Parameters dialog box).

5-71

Switch External Mode Configuration

See “Using External Mode” on page 2-32 for instructions for converting
a model to use external mode for signal logging and parameter tuning.

5-72

Switch Target Configuration

Purpose Configure model and target preferences to predefined hardware
configuration

Librclry Target Support Package FM5/ MPC555 Driver Library/ Utilities

Description Place this block in your model and double click it to run a convenience

function that configures your model and Target Preferences to one of
a set of predefined configurations. If your setup does not correspond
to one of the predefined configurations, you may wish to use the file

Switch Target (mpc555rtswitchconfig.m) as a template for setting up your own
Hardware Configuration cystomized configurations. The predefined configurations include
settings for:

Swvitch Target
Configuration

Phytec phyCORE-MPC555 (system frequency 20 or 40 MHz)
Phytec phyCORE-MPC565 (system frequency 40 MHz)
Axiom CME-555 (system frequency 40 MHz)

Axiom CME-564 (system frequency 40 MHz)

5-73

TouCAN Error Count

5-74

Purpose

Library

Description

Dialog
Box

Count transmit and receive errors detected on selected TouCAN modules

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The TouCAN Error Count block maintains and reports a count of errors
detected by the selected TouCAN module during receive and transmit.
The receive and transmit error counts are output to the RX and TX
outputs of the block, respectively.

The error counts also drive the TouCAN Warnings block outputs. (See
TouCAN Warnings.)

E! Source Block Parameters: TouCAN Er x|

—MPCEE5 TouCAN Error Count [Transmit/Receive] (mazk] [link)

Fead the tranzmit/receive eror counter registers
[TXECTR/R=ECTR] on the zelected TouCAMN module.

—Farameters

Mocule: TS

Sarmple tine:
Jo1

ok I Cancel | Help |

Module
Select TouCAN module A, B or C. Note that the MPC555 only has
modules A and B. MPC56x (561-6) also have module C. An error
will be thrown if you select C and your target processor does not
support this.

Sample time
Sample time of the block.

TouCAN Fault Confinement State

Purpose

Library

Description

TouCAN_A
Fault
Confinement State

TouCAN Fault Confinement State

Dialog
Box

Indicate state of TouCAN module

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The TouCAN Fault Confinement State block provides an indicator for
the state of the selected TouCAN module. The block obtains and outputs
a field of two bits from the TouCAN module’s Error and Status (ESTAT)
register. The possible states are shown in the table below.

Refer to section 16, "CAN 2.0B Controller Module," in the MPC555
User’s Manual for further information.

FCS State Values

State Value Description

Error Active 00 Normal operation

Error Passive 01 Listening only mode. The device cannot
transmit.

Bus Off 1x The device is not allowed to transmit or
receive and is effectively cut off from the
bus.

zl

—MPCEE5 TouCAN Fault Confinement State [mask] (link)

Indicates the fault corfinement state of & TouCAMN module.

—Farameters
Modle: EESARGGEGG——GGGG—— -
Sample time:

Jo

u] % I Cancel Help

5-75

TouCAN Fault Confinement State

Module
Select TouCAN module A, B or C. Note that the MPC555 only has

modules A and B. MPC56x (561-6) also have module C. An error
will be thrown if you select C and your target processor does not
support this.

Sample time
Sample time of the block.

5-76

TouCAN Interrupt Generator

Purpose

Library

Description

ToulAN_A
Interrupt

TaoulAN Interrupt Generatar

Dialog
Box

Generate asynchronous function-call trigger when CAN interrupt occurs

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The TouCAN Interrupt Generator block generates a function-call trigger
within the context of a TouCAN interrupt service routine, which can be
used to asynchronously execute a function-call subsystem in the model.

This block may be used to execute a function-call subsystem on
occurrence of Bus Off, Error, Wake, or buffer 0-15 interrupts.

Do not use this block unless you are aware of the dangers of using
asynchronous interrupts in the model. Unpredictable data loss or model
behavior may result unless extreme caution is taken. You must also
place an Asynchronous Rate Transition block on each input and output
of any subsystem that is triggered asynchronously by an interrupt, to
ensure data integrity. See Asynchronous Rate Transition.

For faster interrupts, you can disable floating-point support via the
Use floating point option. However, if you disable floating-point
support, do not use blocks that require floating-point operations in the
function-call subsystem. Use of such blocks will cause a floating-point
exception at run-time.

[Z]Block Parameters: TouCAN Interrupk Generaj:i: ed
—MPCHES TouCaM Intermupt Generator [mask) (link]

Generate a function-call tigger vathin a TowCAN interupt and execute a callback in
the context of the intermupt service routine.

Do ot uze thig block in comunction with the butfer that iz uzed to transmit data az an
intermupt iz already generated for thiz buffer. If the callback does not contain
floating-point data tpes, pou cah dizable floating-point support for faster execution.

—Parameters
g
Intermupt source: | Errar LI

¥ Use floating point

] I LCancel Help | Spply |

5-77

TouCAN Interrupt Generator

Module
Select TouCAN module A, B or C. Note that the MPC555 only has

modules A and B. MPC56x (561-6) also have module C. An error
will be thrown if you select C and your target processor does not
support this.

Interrupt source
Choose the interrupt source (Bus Off, Error, Wake or Buffer 0-15)

for your ISR generator.

Use floating point
Enable or disable floating-point support.

5-78

TouCAN Receive

Purpose

Library

Description

TouCan_a 10
Reaceive hisg

wr

TouCAN Receive

Receive CAN messages from TouCAN module on MPC5xx

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The TouCAN Receive block receives CAN messages from the TouCAN
module.

The TouCAN Receive block can reserve any of the 16 buffers on the
TouCAN module. Alternatively, you can instruct the TouCAN Receive
block to select a hardware buffer automatically from the available
buffers.

The TouCAN Receive block provides two alternative mechanisms for
notifying downstream blocks that a new message has arrived. The
default behavior is that the block has a Function Call Outport; in

this case the associated trigger is activated whenever a new message
becomes available. The alternative option is more complex and involves
use of a separate TouCAN Interrupt Generator block; the TouCAN
Interrupt Generator block can be used to execute the downstream
function call subsystem within the context of the CAN interrupt service
routine. This alternative option is recommended for advanced users
only. In most applications it is recommended to use the Function Call
Outport.

With the Function Call Outport mode the TouCAN Receive block polls
its message buffer at a rate determined by the block’s sample time.
When the TouCAN Receive block detects that a message has arrived,
the function call trigger is activated.

An additional option for use with the Function Call Output mode is to
use a FIFO queue. In this mode, instead of polling the hardware buffer
directly, the block polls a software FIFO buffer. Each time a message

is received in the hardware buffer for this block an interrupt service
routine automatically transfers the message to the FIFO buffer. On each
block update, the FIFO is cleared by processing the messages in turn; a
separate function call is generated for each message that is extracted
from the FIFO. If it is known that the block sample time is smaller than
the minimum time between messages that the block must receive then

5-79

TouCAN Receive

5-80

Dialog
Box

you should use the standard mode of operation where the hardware
buffer is polled directly. However, if the messages may be arriving faster
than the block is polling the buffer, you should use the FIFO mode.

Tip: if you need to receive several different messages with different
identifiers, arriving at irregular intervals, into a single buffer, you can
use one of the dedicated receive masks for buffers 14 or 15 along with
a CAN Message Filter block, and a TouCAN Receive block operating
in FIFO mode. See the Masks parameters in “TouCAN Configuration
Parameters” on page 5-43.

E! Source Block Parameters: TouCAN Receive x|

—MPCEES TouCAM Receive [mazk] [link]

Feceives CAM messages from the selected TouCAN module.

r—Parameter

TouCAN module: VNG -

CAMN message identifier:
| hex2decroo)

Mew meszage notification via: I Function Call Outpart ﬂ

v Automatically select buffer
Buffer number [0 -15]:
14

[Use interrupt driven FIFO queue ta buffer received messages

Length [nurmber of mezsages] of interrupt driven queue:
]

CAN message tupe: | Standard (11-hit identifer) |

Sample time:
[iK]

(0].4 I Cancel | Help |

TouCAN module
Select one of the two TouCAN modules (A or B) on the MPC555.
MPC56x (561-6) also have module C. The TouCAN modules can
receive messages independently. Note that an error will be thrown
if you select C and your target processor does not support this.

TouCAN Receive

The CAN C module shares its pins with the MIOS module (which
pins are shared depends on the variant). If you use the CAN C
module and MIOS module together, you may experience resource
conflicts which you will need to resolve.

CAN message identifier
The identifier of the message you want to receive. Note that if you
have set the TouCAN configuration parameters (see “TouCAN
Configuration Parameters” on page 5-43) in your model to mask
out certain bits (e.g., the message identifier field) you may receive
messages with identifiers other than the identifier specified here.

New message notification via:
Function Call Output — Synchronous notification that a new
message has arrived.

"TouCAN Interrupt Generator' block — If you select this
option you must place the TouCAN Receive block in a function-call
subsystem that is asynchronously triggered by a TouCAN
Interrupt Generator block (as shown below). When you select
this option, the function call output is no longer required, and
disappears. Make sure you select the same receive buffer within
the TouCAN Interrupt Generator and the TouCAN Receive block.
When a message is received in the specified buffer the TouCAN
Interrupt Generator block generates a function-call trigger
(within the context of a TouCAN interrupt service routine),
which can be used to asynchronously execute the function-call
subsystem containing the TouCAN Receive block. See TouCAN
Interrupt Generator for details.

5-81

TouCAN Receive

TauCAaMN_A
IR - Buffer 14

ToauCAN Interrupt Generatar

functioni])
Ot

Function-Call
Subsystem

Automatically select buffer
When this option is selected, the TouCAN Receive block
automatically selects a receive buffer from the available buffers.
We recommend that you use this automatic buffer selection,
unless you want to use buffer 14 or 15, which can be masked
individually, to receive multiple CAN message identifiers in a
single buffer. See the Mask parameters in “TouCAN Configuration
Parameters” on page 5-43.

Buffer number [0..15]
This field is enabled if the Automatically select buffer
option is cleared. Buffer number specifies the identifier of
the receive buffer for this block. We recommend that you select
Automatically select buffer instead of manually specifying
the buffer, unless you want to use buffer 14 or 15, which can be
masked, to receive multiple CAN message IDs in a single buffer.
See the Mask parameters in “TouCAN Configuration Parameters”
on page 5-43.

Use interrupt driven FIFO queue to buffer received messages
Use the FIFO mode if the messages may be arriving faster than
the block is polling the buffer. Use this option if the messages may
be arriving faster than the block is polling the buffer.

Length (number of messages) of interrupt driven queue
This field is enabled if you select the interrupt driven queue
option, then you can specify a number of messages.

5-82

TouCAN Receive

CAN message type
The type of message you want to receive. Select either
Standard(11-bit identifier) or Extended(29-bit
identifier).

Sample time
Determines the rate at which to sample the buffer to see if a new
message has arrived. Set to -1 (inherited) if using this block in
a function-call subsystem triggered by the TouCAN Interrupt
Generator block.

Note The TouCAN Receive block sample time should be set to

a value that is smaller than the minimum time between CAN
messages that will be received into the corresponding buffer. If
the minimum time between messages may be shorter, use the
FIFO mode (select interrupt driven queue). Otherwise if more
than one message is received into a buffer during a single sample
interval, the older message will be overwritten.

5-83

TouCAN Soft Reset

5-84

Purpose

Library

Description

TauCAN_A
Soft Reset

TouCAN Soft Reset

Dialog
Box

Reset TouCAN module

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

When the TouCAN Soft Reset block executes, the TouCAN module
resets its internal state. The TouCAN error counters will be reset.
The Fault Confinement State will be reset to the Error Active state,
provided the TouCAN module has not reached the Bus Off state. See
TouCAN Fault Confinement State.

We recommend that you place this block in a triggered or function-call
subsystem, with a sample time of -1 (inherited).

[ZIBlock Parameters: TouCAN Soft Reset 2lx|
—MPLCE5E TouCaM Soft Reset [mask] [link]

Performs a TouCAN module soft reset and re-initialization. Al eror counters and error
flagz are rezet during thiz process, but the contents of the meszage buffers and the
tranzmit queus are unchanged.

Thiz block zhould be placed in a triggered or fuhctioh-call subsystemn.

—Farameters
bt AT -
Sample time:
|
Ok I Cancel | Help | Apply |
Module

Select TouCAN module A, B or C. Note that the MPC555 only has
modules A and B. MPC56x (561-6) also have module C. An error
will be thrown if you select C and your target processor does not
support this.

Sample time
Sample time of the block.

TouCAN Transmit

Purpose

Library

Description

ToulAaM_A

hd
= Transmit

TauCAMN Transmit

Transmit Modes

Transmit CAN message via TouCAN module on MPC5xx

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The TouCAN Transmit block transmits a CAN message onto the CAN
bus. The TouCAN Transmit block uses the queue set up by the MPC555
Resource Configuration object (see MPC555 Resource Configuration).
The block should be connected to CAN Message Packing blocks. Do not
ground the block or leave it unconnected. See the demos mpc555rt_io
and mpc555rt_candb for an example.

The TouCAN Transmit block provides three different transmission
modes. You should choose which transmission mode to use depending
on the requirements of your application. The properties of each
transmission mode are summarized in the following table.

FIFO Queued
Transmission with

Priority Queued Direct
Transmission with | Transmission with

Shared Buffer Dedicated Buffer Dedicated Buffer

Uses Interrupts

Yes No Yes

Configurable queue

size

Yes No Yes

5-85

TouCAN Transmit

Transmit Modes (Continued)

Priority Queued
Transmission with
Shared Buffer

Direct
Transmission with
Dedicated Buffer

FIFO Queued
Transmission with
Dedicated Buffer

Order of message
transmission

Messages
transmitted in
order of priority;
a new message
will overwrite any
existing message
that is in the queue
and has the same
identifier and
type (standard or
extended)

Most recent message
overwrites any
unsent message

in the buffer

Messages
transmitted in the
order that they were
placed in the queue

Hardware buffers

Either one or three

One hardware buffer

One hardware buffer

consumed hardware buffers are | required for each required for each
shared by many CAN | CAN Transmit block | CAN Transmit block
Transmit blocks

CPU time required Generally more than | Very little; no Little; interrupts

the other modes;
interrupts used but
time required to
service interrupts
is longer because
it takes account of
message priorities
and increases with
queue length

interrupts used

used but very simple
interrupt service
routine

For applications where the message contains time-sensitive (e.g.
real-time sensor readings) information, it is recommended to use one of
the Priority queued transmission with shared buffer or Direct
transmission with dedicated buffer modes. For applications where

5-86

TouCAN Transmit

it is more important that messages are received in the order that

they were queued for transmission (e.g. a data logging protocol), it is
recommended to use the FIFO queued transmission with dedicated
buffer mode.

Note that the Queued transmission with shared buffer mode can
use one or three shared buffers depending upon the setting in the
Resource Configuration block. See Transmit Shared Buffers in the
TouCAN configuration settings of the MPC555 Resource Configuration
object. When three buffers are used, the driver ensures that the
message entered into arbitration to be transmitted via the CAN bus

is always the highest priority message available; furthermore in this
mode the TouCAN module is able to transmit messages continuously by
re-loading hardware buffers that become empty while another buffer
is active transmitting. The shared buffer approach uses either buffer
0 or buffers 0, 1, and 2, depending on the setting in the Resource
Configuration block.

If the Queued transmission with shared buffer mode is configured to
use three shared buffers, there is a small possibility that some messages
would be transmitted more than once. If you want to prevent this
behavior, you should use this mode with a single shared buffer or use a
mode other than Queued transmission with shared buffer.

The ’Queued transmission with shared buffer’ mode maintains a queue
of messages that are loaded into a hardware buffer of the TouCAN
module as soon as one is available. Note that if a new message is
ready to be sent that is higher priority than messages already in the
hardware buffers then the lowest priority message will be moved from
the hardware buffer back into the queue. This approach ensures

that a high priority message cannot be blocked by one or more lower
priority messages that are already in the hardware buffers. Under some
circumstances it is possible that a lower priority message will actually
be transmitted despite being moved from the hardware buffer back into
the software queue; if this happens, the message concerned would be
transmitted twice rather than once.

5-87

TouCAN Transmit

L]
Dla |Og E! Sink Block Parameters: TouCAN Transmik il

Box —MPCEE5 TouCAN Transmit [maszk] [link]

Tranzmitz a CAMN message via the selected TouCAN module.

—Farameters

ocule: A —— - |

Trangrnit mode:l [Queued transmission with shared buffer j

Buffer numbers allocated (at last Update Diagram]:
|o

Sample time:

|1

K I Cancel | Help | Apply |

Module
Select TouCAN module A, B or C. Note that the MPC555 only has
modules A and B. MPC56x (561-6) also have module C. An error
will be thrown if you select C and your target processor does not
support this.

The CAN C module shares its pins with the MIOS module (which
pins are shared depends on the variant). If you use the CAN C
module and MIOS module together, you may experience resource
conflicts which you will need to resolve.

Transmit mode
Select one of the transmit modes described in the table.

Length (number of messages) of FIFO queue
If you select the FIFO transmit mode, you can set the number
of messages in the FIFO queue here. Note this is only for the
FIFO queue and is not the same as the Transmit_Queue_ Length
Resource Configuration parameter in “TouCAN Configuration
Parameters” on page 5-43, which only applies to shared queues.

Buffer numbers allocated (at last Update Diagram)
Read only field for information on which buffers are in use.

5-88

TouCAN Transmit

Sample time
Choose -1 to inherit the sample time from the driving blocks. The
TouCAN Transmit block does not inherit constant sample times
and runs at the base rate of the model if driven by invariant
signals.

5-89

TouCAN Warnings

5-90

Purpose
Library

Description

TouCaM_a T#F
Warnings gk

TauCAN Warnings

Dialog
Box

Flag excessively high transmit or receive error counts on TouCAN
modules

Target Support Package FM5/ MPC555 Driver Library/ CAN 2.0B
Controller Module

The TouCAN Warnings block has two logical outputs, RX and TX. If the
transmit error counter is over 95, then the TX output goes high. If the
receive error counter is over 95, then the RX output goes high.

Use this block, in conjunction with a TouCAN Error Count block, to
monitor error conditions on a selected TouCAN module.

[Z]5ource Block Parameters: TouCAN Warnings x|

—MPLC555 TouCAN W arings [Tranzmit/Receive) [mask] [link)
Read the transmit/receive warning bits [THM AR M /RAa/AR M) from the emor and
statug regizter [ESTAT) on the zelected TouCAN module.

If the: transmit/receive enor counter exceeds 35 then the TewaRMN/RXwWARN
output goes high.

—Farameters
Macule: (LG -
Sarple tirme:
Jo
0K I Cancel | Help |
Module

Select TouCAN module A, B or C. Note that the MPC555 only has
modules A and B. MPC56x (561-6) also have module C. An error
will be thrown if you select C and your target processor does not
support this.

Sample time
Sample time of the block.

TPU3 Digital In

Purpose

Library

Description

Ligital In
[TPUZ)

TFRU3Z Digital In

Configure Time Processor Unit (TPU3) channel for digital input

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

The TPU3 Digital In block reads the logical state of the selected pin
(channel) on the TPU3 submodules of the MPC555 or MPC56x. You
can use this block in the same way as the MIOS Digital In block. You
might need to use this block instead of the MIOS Digital In block, for
example, if TPU is available but not MIOS. The Channel priority field
specifies a number in the range 0..15, corresponding to 16 independent
timer channels on each of the modules of the TPU3. The output of the
block represents the logic state of the pin referenced in the module and
channels fields. When the signal on a given pin is a logical 1, the block
output signal will be equal to 1; otherwise the block output element
will equal zero.

The TPU has 16 channels on each module A and B (MPC565 and 566
also have module C). You can use each of these channels independently,
so for an MPC555 you could use up to 32 of these blocks, specifying
different channels, at once.

Refer to Section 17, "Time Processor Unit 3," in the MPC555 User’s
Manual for further information, and the TPU3 Digital I/O Application
Programming Note (search for "TPUPN18/D").

For an example showing how to use this block see the mpc555rt_io
demo.

5-91

TPU3 Digital In

Dialog
Box

5-92

E! Source Block Parameters: TPU3 Digika |

—MPCS55 Digital Input [TPU3) (mask) link]

Configurez a Time Procezsor Unit [TPL3] channel for digital input.
Reads the logical state of the specified TP channel pin.

—Farameters

TP mochie: EA— - |

TRU charinel numbel:l 0 ;I
Channel priority:l Medium ;I
Sample time:
0.1
kK I Cancel | Help |
TPU module

Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel number
Choose 0-15.

Channel priority
Choose Low, Medium or High.

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are
serviced by setting the channel number and assigned priority. The
order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

Sample time
The default is always 0.1 for input driver blocks, but you will
need to change this to suit the frequency of your input signals.

TPU3 Digital Out

Purpose

Library

Description

Crigital Out
(TPUZ)

TPUZ Digital Out

Configure Time Processor Unit (TPU3) channel for digital output

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

The TPU3 Digital Out block sets the state of the selected pin (channel)
on the TPU3 submodule of the MPC555 (or MPC565 or MPC566).

The Channel priority field specifies a number in the range 0..15,
corresponding to the 16 independent channels on each TPU3 module (A,
B or C). You can use each of these channels independently, so you could
use up to 32 of these blocks (48 for an MPC565 or MPC566) specifying
different channels at once.

When the input signal is greater than zero, a logical 1 is written to the
corresponding pin. When the input signal is less than or equal to zero, a
logical zero is written to the corresponding channel.

Refer to Section 17, "Time Processor Unit 3", in the MPC555 User’s
Manual and the TPUS3 Digital I/O Application Programming Note
(search for "TPUPN18/D") for further information about the TPUS3.

For an example showing how to use this block see the mpc555rt_io
demo.

5-93

TPU3 Digital Out

Dialog
Box

5-94

E! Sink Block Parameters: TPU3 Digital Duk x|
—MPCEES Digital Output [TPUZ) [mazk] [link)
Cotfigurez a Time Pracezsor Unit [TPU3) channel far digital output. ‘when the input

signal iz greater than zero a logical one is wiitten to the corresponding pin; othensize
a logical zero is written.

—Farameters

TPU mochl: EAEG—GGGG—GGG— -
TPU charinel number:l i} ﬂ
Channel priorily:l F ediurm ;I
Sarmple time:

-1

1].8 I Cancel | Help | Apply |
TPU Module

Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel number
Choose 0-15.

Channel priority
Choose Low, Medium or High.

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are
serviced by setting the channel number and assigned priority. The
order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest first).

Sample time
Default -1: this setting specifies that the block inherits its sample
time from the block connected to its input (inheritance) (unless it
is in a triggered subsystem). It makes no sense to sample faster

TPU3 Digital Out

than your input is changing, so normally you should leave this
at the default.

TPU Digital Out doesn’t use a timebase. The output pin is written
to at the rate specified by the block sample time. See “Time
Processor Unit (TPU3) Configuration Parameters” on page 5-46 for
details on settings for the TCR1 clock. See also the TPU3 Digital
In Application Programming Note (search for "TPUPN18/D").

5-95

TPU3 Fast Quadrature Decode

5-96

Purpose

Library

Description

F2r
(TRUZ)

TRU3 Fast
Quadrature Decode

Configure pair of TPU3 channels for Fast Quadrature Decode (FQD)

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

The TPUS3 Fast Quadrature Decode block decodes position information
from quadrature encoder hardware. The relative phase of a pair of
input signals is used to determine direction of movement. The signals
are decoded to increment or decrement the position counter (block
output). You can derive a speed from the position information. It is
particularly useful for decoding position and direction information from
a slotted encoder in motion control systems.

In normal mode (the default), the position counter is incremented or
decremented for each valid transition on either channel. The counter
increments when the primary channel is ahead and decrements when
the primary channel lags. A switch in the phase relationship indicates a
change of direction.

At certain speeds you may want to switch to fast mode. You can
supply an input to tell the block to switch to fast mode under specified
conditions. In fast mode only one of the two input signals is read. The
position counter increments or decrements by 4 for each rising transition
on the primary channel only (instead of once for each transition in each
signal). This reduces the TPU processing load; you can also decode at
more than four times the maximum count rate of normal mode.

The counter is 16 bit and free flowing (that is, it overflows to 0,

and underflows to OxFFFF). You must take care when calculating
speed derived from the counter, as it may be necessary to use two’s
complement arithmetic. A useful document is the TPU Fast Quadrature
Decode Programming Note — search for "TPUPNO02/D."

It is possible to overload the TPU processor; if you observe unexpected
behavior you should consult the TPU documentation. Refer to Section
17, "Time Processor Unit 3," in the MPC555 User’s Manual for further
information.

TPU3 Fast Quadrature Decode

Dialog

Box

E! Source Block Parameters: TPU3 Fast Quadratu, x|

—MPC5E6 Fast Quadrature Decode [TPLU 3] [mask] (link]

Configures a pair of Time Proceszsor Unit [TPU3) channels for Fast Quadrature
Decode [FAD). Decodes a pair of out-of-phase input signals in order to increment or
decrement the position counter [block output).

The POSITION_COUMT parameter can be made available easily to other TPU
blocks zuch as the MITC function by providing an alias.

—Farameters

TRU mocule: EZSAAR— - |

TPU channel numbers [primany and secondar_l,l]:l Oand

Bl
Channel priolit_l,l:l Medium j
[~ Show Fast Made port
Initial value for POSITION_COLMT:
Jo
FOSITION_COUMT parameter alias [optional):

Sarmple time:
i)
Ok I Cancel | Help |
TPU module

Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel numbers (primary and secondary)
Select a pair of consecutive channels from (0 and 1) to (14 and 15).
The primary channel is always the lower channel number.

Channel priority:
Choose Low, Medium, or High

The order in which channels are serviced is determined by
assigned priority first, followed by channel number (lowest
number first).

5-97

TPU3 Fast Quadrature Decode

5-98

Show Fast Mode port

This option is unselected by default. Left unselected, the block
always operates in Normal mode. If you select this option, an
inport appears where you can input a Boolean signal to control
the mode of operation (for example, from a Stateflow® subsystem):
0 or false = Normal Mode; 1 or true = Fast Mode.

Fast mode conserves TPU activity by only reading one of the
two signals. This also allows you to decode at more than four
times the maximum count rate of Normal mode. This may be
appropriate at some speeds where you can assume the behavior
of the second sign — instantaneous direction change is assumed
to be impossible. The counter is updated in the same direction
as when the last transition was serviced in Normal Mode. The
position counter is incremented or decremented by 4 for every
rising transition read on the primary channel, instead of having
to read all four transitions in the two signals.

Initial value for POSITION_COUNT

Set an initial value. Range checking is applied (must be 16 bit).

POSITION_COUNT parameter alias (optional)

Provide a name that blocks such as the TPU3 New Input
Capture/Input Transition Counter can use to refer to the
POSITION COUNT Fast Quadrature Decode parameter (see TPU3
New Input Capture/Input Transition Counter). Using a name is
clearer than using absolute channel and parameter indices to
refer to the position count from another TPU block.

Sample time

The default is always 0.1 for input driver blocks, but you will
need to change this to suit the frequency of your input signals.

This block uses TCR1 as a timebase, but the functionality of the
TPU Fast Quadrature Decode (FQD) function used by the block
is not changed by changing the speed of the TCR1 clock. The
Position Count output is incremented at a rate entirely controlled
by the rising and falling edges of the pair of input waveforms

TPU3 Fast Quadrature Decode

(and the Fast mode input). See “Time Processor Unit (TPU3)
Configuration Parameters” on page 5-46 for more information
on the TCR1 timebase settings.

5-99

TPU3 New Input Capture/Input Transition Counter

Purpose

Library

Description

TPUZ Mew Input Captures
Input Transition Caunter

5-100

HITC
(TPLUZ)

Configure Time Processor Unit (TPU3) channel for New Input
Capture/Input Transition Counter (NITC)

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

The TPU3 New Input Capture/Input Transition Counter block counts
transitions on the input pin and/or captures a TCR timebase value or a
TPU parameter RAM value after a certain number of transitions. You
can select the number of transitions and whether to capture on rising or
falling transitions or both.

You can select up to three outputs to display. Each will have a separate
outport:

® FINAL_TRANS_TIME shows the captured value each time the
maximum number of transitions (MAX_COUNT) is reached

® TRANS_COUNT shows the number of transitions counted (resets each
time MAX_COUNT is reached)

® LAST_TRANS_TIME shows the captured value at the most recent
transition, updated at every transition (except final transitions). At
the final transition LAST_TRANS_TIME shows the captured value at
the previous transition.

You can choose whether to capture the TCR1 timebase value each time
the MAX_COUNT number of transitions is reached, or you can specify
the address of a TPU parameter in RAM to capture at that moment.
Note this block always operates in continuous mode, not single-shot
— transitions are counted up to MAX_COUNT and then the block resets
and continues counting from zero.

We cannot guarantee that the three outputs are read coherently. They
are read one after another, and it is possible that while the memory
is accessed for one parameter the next to be read may have changed
value. This depends on the speed of your input signal. This should
not be important for most purposes because only TRANS COUNT or
FINAL_TRANS_TIME will be the outputs of interest.

TPU3 New Input Capture/Input Transition Counter

As an example, you could use this block in conjunction with the TPU3
Fast Quadrature Decode block for calibration purposes. Quadrature
encoders often generate an index signal in addition to the pair of signals
whose relative phase contains the position information. You could

put this index signal into an NITC input to count pulses in order to
calibrate the position of the encoder.

Refer to Section 17, "Time Processor Unit 3," in the MPC555 User’s
Manual for further information. A particularly useful document is the
TPU New Input Capture/Input Transition Capture Programming Note
— search for "TPUPNO08/D." Look in the appropriate TPU programming
note to look up parameter addresses if you want to capture TPU
Parameters instead of TCR1 clock ticks.

As an example of using TPU parameters, if you wanted to use this block
to capture the position count from a TPU Fast Quadrature Decode block,
you need to set the correct channel number and parameter address. You
must set the channel number to the primary FQD channel (FQD blocks
use a pair of channels, the first is primary). Each TPU channel can
have up to eight parameters (0 through 7), in this case you must choose
parameter 1 (POSITION_COUNT).

5-101

TPU3 New Input Capture/Input Transition Counter

(]
Dialog x

Box —MPCEEE Mew Input CapturedInput Transition Counter (TPLU3) [mask] [link)

Configurez a Time Proceszar Uit [TPU3) channel far Mew Input Capture/ nput
Tranzition Counter [MITC]. Counts individual tranzitions o the input pin, ahd allows
the capture of a TCR or TPU parameter Bk value after a selectable number of pin
transitions.

—Farameters

TRU module: SN -

TPU chatinel number:l a ;I
Channel priorit_l,l:l b edium ;I
[Show FINAL_TRANS_TIME port

[~ Show TRANS_COUNT part

[~ Show LAST_TRAMS_TIME part

Detect transition Dn:l Rizing Edge ;I
Eapture:l TCR1 ¥alue ;I
Specify parameter location b_l,l:l Channel and Parameter Indes ;I
TPU channel to capture parameter from:l 0 ;I
Channel parameter [16-bit) to capture:l 0 ;I

Parameter alias:

Mumber of tranzitions before capture and reset [MAx_COUMNT]:

/1

Sample time:
i)
ak I Cancel | Help |
TPU module

Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel number
Choose 0-15.

5-102

TPU3 New Input Capture/Input Transition Counter

Channel priority:
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are
serviced by setting the channel number and assigned priority. The
order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

Show FINAL_TRANS_TIME port
Outputs the value captured each time the maximum number of
transitions (MAX_COUNT) is reached. This value is only captured
when MAX_COUNT is reached.

Show TRANS_COUNT port
Outputs the number of transitions counted. Resets to zero each
time MAX_COUNT is reached.

Show LAST _TRANS_TIME port
Outputs the captured value at the latest transition. This is
updated at every transition except the final one.

Detect transition on:
Choose from Rising Edge, Falling Edge or Either Edge.

Capture:
TCR1 Value — captures the value of the TCR1 timebase. See
“Time Processor Unit (TPU3) Configuration Parameters” on page
5-46 for information on setting the TCR1 timebase.

Parameter RAM Value — captures the value of a TPU parameter
in RAM. If you select this option you enable the parameters to
choose the TPU channel number and parameter address, or to
specify a parameter alias.

Specify parameter location by
Channel and Parameter Index — if you select this option you
enable the two parameters to specify which TPU channel (from
0-15) and which parameter index (out of up to eight parameters
per TPU channel) you want.

5-103

TPU3 New Input Capture/Input Transition Counter

Parameter Alias — If you select this option you enable the
Parameter alias edit box. For example you can specify a
parameter alias for the POSITION_COUNT parameter in the
TPU3 Fast Quadrature Decode block. See TPU3 Fast Quadrature
Decode.

Note that you cannot set the parameter location unless you have
chosen Parameter RAM Value for the Capture parameter.

TPU channel to capture parameter from
Specify which TPU channel (from 0-15) you want. This option
is enabled when you choose to specify parameter location by
Channel and Parameter Index.

Channel parameter (16-bit) to capture
Specify which parameter index (out of up to eight parameters per
TPU channel) you want. This option is enabled when you choose
to specify parameter location by Channel and Parameter Index.

Parameter alias
This option is enabled when you choose to specify parameter
location by Parameter Alias. Enter the required alias in the
edit box. For example you can specify a parameter alias for the
POSITION_COUNT parameter in the TPU3 Fast Quadrature
Decode block. See TPU3 Fast Quadrature Decode.

Number of transitions before capture and reset (MAX_COUNT)
This must be a 16-bit number specifying how many transitions
to count before capturing and then resetting. A zero will be
equivalent to 1 (you cannot count zero transitions) and you must
not exceed the maximum of a uint1l6 number. The range of an
unsigned 16-bit number is 0-65535 (because 65535 = (2716) - 1).

Range checking is applied; you will receive a warning if you input
an unsuitable number.

Sample time
Be sure to set the sample time fast enough not to miss any
transitions. This will depend on the frequency of your input signal.

5-104

TPU3 Programmable Time Accumulator

Purpose
Library

Description

FTA
(TRLZ)

TFUZ Programmable
Time Accumulatar

Configure Time Processor Unit (TPU3) channel for Programmable Time
Accumulator (PTA)

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

The TPU3 Programmable Time Accumulator block reads an input
pin and measures an accumulation of time over a specified number of
periods - either high time, low time, or the total time. You can output
the accumulated time, the number of periods, or both. You can choose
whether to start counting total period on a rising or falling edge.

The accumulated time value will be read at most once between any two
model steps. TPU interrupts are used to ensure the 32-bit output is
updated only when an accumulation is complete. This ensures that the
values of the parameters HW and LW combined to create the 32-bit output
are coherent. This block is under MPC555 Resource Configuration
object control, and you will receive a warning if you have not enabled
TPU interrupts. If your model contains any PTA blocks, you must
change the TPU IRQ settings to enable interrupts. See “Time Processor
Unit (TPU3) Configuration Parameters” on page 5-46.

Refer to Section 17, "Time Processor Unit 3," in the MPC555 User’s
Manual for further information. A particularly useful document is the
Programmable Time Accumulator TPU Function (PTA) Programming
Note — search for "TPUPNO06/D."

5-105

TPU3 Programmable Time Accumulator

(]
Dialog x

Box —MPCE55 Programmable Time Accumulator [TPLU3] [mask) [link)

Configures a Time Processor Unit [TPL3) channel for Programmable
Time Accumulator [PTA). Measures high time, low time or total
period over a selectable number of periods on the input pin.

—Farameters

TRU module: MG - |

TPU chatine! number:l 1] LI
Channel priority:l Medium LI
v Shaow time accumulation [32-bit] port

[~ Show PERIDOD_COUMT port

Measure:l Tatal high tirme LI
Uze time base:l TCR1 LI

Mumber of periods to measure over [kas_COUMT]:

1

Sarmple tine:
Jo1
kK I Cancel | Help |
TPU module

Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel number
Choose 0-15

Channel priority:
Choose Low, Medium, or High

5-106

TPU3 Programmable Time Accumulator

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are
serviced by setting the channel number and assigned priority. The
order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

Show time accumulation (32-bit) port
Outputs the 32-bit time accumulation value (in TCR1 clock ticks)
each time MAX_COUNT is reached. Whether the accumulation
measures high time, low time or total time depends on the
Measure setting.

Show PERIOD_COUNT port
Outputs the number of periods counted.

Measure:
Choose from Total high time, Total low time, Total period
(starting on rising edge), Total period (starting on
falling edge).

Use time base
Select TCR1 or TCR2. You can configure TCR2 to use an
external clock. See “Time Processor Unit (TPU3) Configuration
Parameters” on page 5-46.

Number of periods to measure over (MAX_COUNT):
Set the number of periods to accumulate time over, up to a
maximum of 255. The value is read each time MAX_COUNT is
reached. Note that MAX_COUNT is 8-bit here (it is 16-bit in the
TPU3 New Input Capture/Input Transition Counter block).

Sample time:
Make sure you set a sample time fast enough not to miss any
periods, depending on the frequency of your input signal.

5-107

TPU3 Pulse Width Modulation Out

Purpose
Library

Description

FUlhd Out
(TPLZ)

TPU3Z Pulse Wridth
fadulation Out

5-108

Configure Time Processor Unit (TPU3) channel for pulse width
modulation (PWM) output

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

The TPU3 Pulse Width Modulation Out block is used for Pulse Width
Modulation (PWM) output from the TPU3 modules. You can use this
block in the same way as the MIOS PWM Out block, and with the TPU
block you can also vary the period dynamically using a block inport. You
can modulate up to 16 of these for each module (A, B or C) using any of
the independent TPU channels.

A PWM signal is a rectangular waveform whose period may or may
not be constant, and whose duty cycle can be varied, under control of

a modulator signal, between 0% and 100%. You can either control the
period register directly, or enter the desired (ideal) period and the mask
will solve for the best values for the period register. Note for the MIOS
Pulse Width Modulation Out block the period is constant, but with the
TPU Pulse Width Modulation Out block you can also vary the period of
the PWM signal (using the input port for pulse period option you
can supply the period as an input).

The TPU3 Pulse Width Modulation Out block acts as the modulator,
controlling the duty cycle and period of the signal on the output channel.
There can be one or two inputs. Input one (top) is always the duty cycle.
Here an input signal in the range 0 to 1 generates a PWM output with
corresponding duty cycle. Input signals outside this range cause the
duty cycle to saturate at 0% or 100%.

You can specify the period register manually in the mask. If you select
the option use input port for pulse period register value,
input two appears. Here you can supply the period as an input, instead
of specifying the period in the mask. PWMPER input (either block input
or specified as a mask variable) must be 16 bit values in the range 0 <=
PWM Period Register Value <= 32768 (0x8000).

TPU3 Pulse Width Modulation Out

This saturation means that the block will not allow you to enter a value
for PWMPER > 0x8000, or a value for ideal period that makes the
PWMPER register go outside this range.

The TPU Pulse Width Modulation Out block uses TCR1 as a timebase
for creating the output waveform. By changing the speed of the
TCRI1 clock, the range of available PWM periods changes. See “Time
Processor Unit (TPU3) Configuration Parameters” on page 5-46 for
more information on settings for the TCR1 clock.

Refer to Section 17, "Time Processor Unit 3," in the MPC555 User’s
Manual for further information. See also the relevant TPU3 Application
Programming Note (search for "TPUPN17/D").

For an example showing both ways to use this block (specifying the
period, and using the PWMPER port to input the period), see the
mpc555rt_io demo.

5-109

TPU3 Pulse Width Modulation Out

L]
Dla |Og E! Sink Block Parameters: TPU3 Pulse ¥Width Modul il

Box —MPLCEEE Pulze ‘Width Modulation Output [TPU 3] [mazk] [link)

Configures a Time Processor Unit [TPU3) channel for pulse width modulation [Fadkd)
output. An input signal in the range O to 1 generates a Pk output with
corresponding duty cycle; input signals above [below] this range cause the duty cycle
to zaturate at 100% [0%].

—Parameters
TP mocluie: EA——— - |
TPU charinel number:l a j
Channel priority:l b edium j

[~ Use input port for pulse period register value
[~ Edit period register manually

Wwaveform ideal period:

Jooz

Fulze period register [FWMPER]:

J12500

Waveform actual period:

Jon2

Sample time:

|1

K I Cancel | Help | Apply |

TPU Module

Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel number
Choose 0-15

Channel priority
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are

5-110

TPU3 Pulse Width Modulation Out

serviced by setting the channel number and assigned priority. The
order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

Use input port for pulse period register value
If you select this box, the parameters relating to setting the period
register disappear because they are no longer used.

A new inport appears on the block when you select this option.
Here you can input the period register value. Saturation is
applied: 0 <= x <= 32768 (0x8000). You can see an example of the
block in the demo model mpc555rt_io.

Edit period register manually
If you select this check box, you can set the Pulse period
register parameter.

Waveform ideal period
The default is 0.02. You can enter the waveform period you
want by typing in this edit box. From this the period register
is calculated and appears in the Pulse period register
(PWMPER) edit box. The actual waveform period is also
calculated and displayed, see below.

Pulse period register (PWMPER)
The default is 12500. You can enter a value for the period register
here (0<= x <= 32768 (0x8000)) only if you select Edit period
register manually. The actual waveform period is calculated
and displayed in the actual period field. If Edit period register
manually is not selected, this edit box is disabled (gray).

Waveform actual period
You can never enter anything in this box (so it is always gray) — it
is there purely to inform you, and does not affect the model code.
You might find this information useful because actual and ideal
waveform period are not always the same — the ideal period you
enter may not always be possible.

5-111

TPU3 Pulse Width Modulation Out

Sample time
The default is -1: This setting specifies that the block inherits its
sample time from the block connected to its input (inheritance)
(unless it is in a triggered subsystem). It makes no sense to
sample faster than your input is changing, so normally you leave
this at the default.

5-112

TPU3 Rectangular Wave

Purpose
Library

Description

RECTT
[TPUT2)

TPUT2 Rectanqular Wawe

Configure Time Processor Unit (TPU3) channel for Rectangular Wave
Output (RECTW)

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

This block is provided as an example along with the demo model
mpc555rt_tpu_emu. The rectangular wave function is not part of the
standard ROM mask of TPU functions but can be downloaded to
DPTRAM and used by the TPU in emulation mode.

The TPUS3 Rectangular Wave block outputs a rectangular wave with a
specified high time and specified wave period. Pulses always begin
with a rising edge, and TCR1 is used as the timebase. You can either
control the high-time and waveform period registers directly, or enter
the desired (ideal) periods and the mask will solve for the best values
for the period registers.

If you select the option Use input port to vary HIGH_TIME_RECTW
and PERIOD_RECTW, two inputs appear. You can use these to vary
the high-time and waveform period. The rest of the parameters in the
mask are used as initial values. Input 1 (top) is the high time and
input 2 is the period. Inputs must be 16 bit values in the range 0 <= x
<= 32768 (0x8000).

The TPU Rectangular Wave block uses TCR1 as a timebase for creating
the output waveform. By changing the speed of the TCR1 clock, the
range of available waveform periods changes. See “Time Processor Unit
(TPU3) Configuration Parameters” on page 5-46 for more information
on settings for the TCR1 clock.

Refer to Section 17, "Time Processor Unit 3," in the MPC555 User’s
Manual for further information.

5-113

TPU3 Rectangular Wave

L]
Dla |09 E! Block Parameters: TPU3 Rectangular Wave ll

Box —MPCE55 Rectangular “wfave [TPU 3] (mazk] [link]
Configures a Time Processor Unit [TPU 3] channel for Bectangular wave Output
[RECT'w]

Outpute a Rectangular Wawe with the specified high time, and zpecified wave period,
Pulzes always begin with a rising edge, and TCR1 iz used as the time baze.

w'hen an input port iz used to vare HIGH_TIME_RECTW and PERIOD_RECT, the
rest of parameters in the dialog (H.T or HIGH_TIME_RECTw FERIOD_RECT W] wil

be used as initial values.

Channel Setup IWaveform Setup |

TR mocle: S - |

TPU channel number:l] j
||

Channel pliorit_l,l:l tedium

Sample time:
Bl

0K I Cancel Help Apply

On the Channel Setup tab:

TPU Module
Select TPU module A, B or C; each has 16 channels. Note that the

MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

5-114

TPU3 Rectangular Wave

TPU channel number
Choose 0-15

Channel priority
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are
serviced by setting the channel number and assigned priority. The
order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

Sample time
The default is -1. This setting specifies that the block inherits its
sample time from the block connected to its input (inheritance)
(unless it is in a triggered subsystem). It makes no sense to
sample faster than your input is changing, so normally you leave
this at the default.

5-115

TPU3 Rectangular Wave

[Z1Block Parameters: TPU3 Rectangular Wave x|

—MPCE55 Rectangular ‘Wave [TPU3) [mask] [link)

Configurez a Time Pracezsor Unit [TPU3) channel far B ectangular ' ave Output
[RECT'

Outputs a Rectangular Wave with the specified high time, and specified wave peniod.
Pulses abways begin with a rizing edge, and TCR1 is used as the time base.

‘Wwhen an input port iz uzed to vary HIGH_TIME_RECT% and PERIOD_RECT, the
rest of parameters in the dialog [H.T or HIGH_TIME_RECTw.FERIOD_RECT W] wil
be uzed as initial values.

[~ Edit period registers manually
Ideal high-time [H):
Joot

W aveform ideal period [T):

Jonz

High-time regizter [HIGH_TIME_RECTW):
J5250

W aveform peniod register [FERIOD_BECTw:
J12500

Actual high-tine:
Joo

W aveform actual penod:
Jooz

[~ Use input port to vary HIGH_TIME_RECT and FERIOD_RECT'w

K I Cahcel | Help Apply

On the Waveform Setup tab:

Edit period registers manually
If you select this check box, you can manually set the High-time
register and Waveform period register parameters.

Ideal high-time (H)
You can enter an ideal high-time period (in seconds). From this
the high-time register is calculated and appears in the High-time

5-116

TPU3 Rectangular Wave

register (HIGH_TIME_RECTW) edit box. The actual waveform
period is also calculated and displayed, see below.

Waveform ideal period (T)
Enter the waveform period you want by typing in this edit box.
From this the waveform period register is calculated and appears
in the Waveform period register (PERIOD_RECTW) edit box.
The actual waveform period is also calculated and displayed, see
below.

High-time register (HIGH_TIME_RECTW)
You can enter a value for the high-time register here (0<= x
<= 32768 (0x8000)) only if you select Edit period registers
manually. The actual high-time period is calculated and
displayed in the actual high-time period field.

Waveform period register (PERIOD_RECTW)
You can enter a value for the period register here (0<= x <= 32768
(0x8000)) only if you select Edit period registers manually.
The actual waveform period is calculated and displayed in the
actual period field.

Actual high-time
Information field. You might find this information useful because
actual and ideal high-time period are not always the same — the
ideal period you enter may not always be possible.

Waveform actual period
Information field. You might find this information useful because
actual and ideal waveform period are not always the same — the
ideal period you enter may not always be possible.

Use input port to vary HIGH_TIME_RECTW and
PERIOD_RECTW
Select this box to use input ports to control the high-time and
waveform period registers. Two input ports appear on the block
(the top input is high-time).

5-117

TPU3 Square Wave

Purpose

Library

Description

TP Square Tawve

5-118

aom
[TPT2)

Configure Time Processor Unit (TPU3) channel for Square Wave Output
(SQW)

Target Support Package FM5/ MPC555 Driver Library/ Time Processor
Unit (TPU3)

This block is provided as an example along with the demo model
mpc555rt_tpu_emu. The square wave function is not part of the
standard ROM mask of TPU functions but can be downloaded to
DPTRAM and used by the TPU in emulation mode.

The TPU3 Square Wave block outputs a square wave with a specified
high time (and corresponding low time). Pulses always begin with a
rising edge, and TCR1 is used as the timebase.

You can either control the high-time register directly, or enter the
desired (ideal) period and the mask will solve for the best values for
the period register.

If you select the option Use input port to vary HIGH_TIME_SQW,
an input appears. You can use this input to vary the high-time. The rest
of the parameters in the mask are used as initial values. The input
must be a 16 bit value in the range 0 <= x <= 32768 (0x8000).

The TPU Square Wave block uses TCR1 as a timebase for creating

the output waveform. By changing the speed of the TCR1 clock, the
range of available waveform periods changes. See “Time Processor Unit
(TPU3) Configuration Parameters” on page 5-46 for more information
on settings for the TCR1 clock.

Refer to Section 17, "Time Processor Unit 3," in the MPC555 User’s
Manual for further information.

TPU3 Square Wave

(]
Dialog x

Box MPCE55 Square Wave [TPU3) [mask] [link)
Configurez a Time Processor Unit [TPU3) channel for Sgquare 'Wave output [SEW).

Outputs a Square Wave with the zpecified high time [and coresponding low time).
Pulzes abways begin with a rizing edge, and TCR1 iz uzed az the time base.

‘when an input port is used to wary HIGH_TIME_S0w, the rest of parameters in the
diglog [H or HIGH_TIME_SQ%W] will be used az initial values.

Channel Setup IWaveform Setup I

TPU mocule: [—— -

TPU chatinel number:l i}

Channel priority: I b edium ;l
Sample time;
-1

0K I Cancel | Help Apply

On the Channel Setup tab:

TPU Module
Select TPU module A, B or C; each has 16 channels. Note that the
MPC555 only has modules A and B. MPC565 and MPC566 also
have module C. An error will be thrown if you select C and your
target processor does not support this.

TPU channel number
Choose 0-15

Channel priority
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the
three priorities. You choose the order in which channels are
serviced by setting the channel number and assigned priority. The

5-119

TPU3 Square Wave

5-120

order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

Sample time
The default is -1. This setting specifies that the block inherits its
sample time from the block connected to its input (inheritance)
(unless it is in a triggered subsystem). It makes no sense to

sample faster than your input is changing, so normally you leave
this at the default.

ZlBlock Parameters: TPU3 Square Wave x|

MPCESS Square Wave [TPU 3] [mazsk] [link)
Configurez a Time Processor Unit [TPU3) channel for Square 'Wave output [SEW).

Outputs a Square 'Wave with the specified high time [and carrezpanding low time).
Pulzes abways begin with a rizing edge, and TCR1 is uzed az the time base.

When an input port iz uged to vary HIGH_TIME_SO%, the rest of parameters in the
dialog (H or HIGH_TIME_SO'W] will be used as initial values.

Channel Setup |

[~ Edit high time register marnually
Ideal high-time [H]:

Jonz

High-tire register [HIGH_TIME_SC'Ww .
J12500

Actual high-tine:
Jonz

[T Use input part ta wvary HIGH_TIME_S0hw

0K I Cancel | Help Spply

On the Waveform Setup tab:

Edit high-time register manually

If you select this check box, you can manually set the High-time
register (HIGH_TIME_SQW) parameter.

TPU3 Square Wave

Ideal high-time (H)
You can enter an ideal high-time period (in seconds). From this
the high-time register is calculated and appears in the High-time
register (HIGH_TIME_SQW) edit box. The actual waveform
frequency is also calculated and displayed, see below.

High-time register (HIGH_TIME_SQW)
You can enter a value for the high-time register here (0<= x
<= 32768 (0x8000)) only if you select Edit high-time register
manually. The actual high-time period is calculated and
displayed in the actual high-time field.

Actual high-time
Information field. You might find this information useful because
actual and ideal high-time period are not always the same — the
ideal period you enter may not always be possible.

Use input port to vary HIGH_TIME_SQW
Select this box to use an input port to control the high-time
register. An input port appears on the block.

5-121

Watchdog

Purpose

Library

Description

Miatchdag
Timer

5-122

fatchdog

In case of application failure, time out and reset processor
Target Support Package FM5/ MPC555 Driver Library

The Watchdog block lets you set the time-out period for the watchdog
timer. The watchdog timer is a safety feature that is used to monitor
correct behavior of the application. The timer is loaded with an initial
value and counts down from this value. If the timer ever reaches zero, a
watchdog time-out occurs, forcing a processor reset.

In normal operation, the is serviced at a regular interval (each model
step) by the application code; this occurs at a higher frequency than the
Watchdog Timeout parameter period. Therefore the counter never
reaches zero and a processor reset is never triggered.

In the event of a software failure that causes the application to lock
up, the watchdog timer will not be serviced. Therefore, it will time out
when the counter reaches zero. This in turn causes a processor reset,
which restarts the application.

You do not need to include a Watchdog block in your model unless you
want to change the Watchdog Timeout parameter period to a value
other than the default. By default, the watchdog timer is enabled and
the time-out period is set to the largest possible value, which is several
seconds, depending on system frequency.

Note that the Watchdog block has neither input nor output connections.

Watchdog
|

Dlalog Block Parameters: watchdog E

Box — MPCHEE Watchdog [maszk] [link]

Set the timeout period of the watchdog timer.

Marmally the timer is reset even time the faztest zample peniod of the
model executes. If the model getz locked and stops executing then the
watchdog will imeout and reset the processar,

— Parameters
W atchdog Timeout [zeconds]

|n.1|

k. I Cancel Help Apply

Watchdog Timeout
The Watchdog Timeout period must be set to a value that is
larger than the fastest sample rate in the system, because this
is the rate at which the watchdog timer is serviced. To set the
Watchdog Timeout period, place a Watchdog block anywhere in
the model and open its dialog box.

5-123

Watchdog

5-124

Configuration Parameters

Real-Time Workshop Pane: ET
MPC5xx (Algorithm Export) Options
(p. 6-2)

Real-Time Workshop Pane: ET
MPC5xx Real-Time Options (1)
(p. 6-10)

Real-Time Workshop Pane: ET
MPC5xx Real-Time Options (1)
(p. 6-10)

Real-Time Workshop Pane: ET
MPC5xx Real-Time Options (2)
(p. 6-17)

Parameters for controlling the build
process for algorithm export.

Parameters for controlling the build
process for processor-in-the-loop.

Parameters for controlling the build
process for real-time standalone
execution.

Parameters for controlling execution
profiling and scheduling overrun
behavior.

6 Configuration Parameters

6-2

Real-Time Workshop Pane: ET MPC5xx (Algorithm Export)
Options

Real-Time Workshop

1ata Placenent I Diata Type Replacement Memary Sections ET MPCE=x [algorithrm export] options

’7|7 Uze prebuilt [ztatic] BT Libraries

In this section...
“ET MPC5xx (Algorithm Export) Options Tab Overview” on page 6-2
“Use prebuilt (static) RTW Libraries” on page 6-4

ET MPC5xx (Algorithm Export) Options Tab Overview

Control recompiling of libraries for faster build times.

Configuration
This pane appears only if you specify the mpc555exp.tlc system target file.

Tips

® The Algorithm Export (AE) target generates only the code that implements
the algorithm of your model or subsystem. This is useful for code analysis
and interfacing to hand-written or legacy code.

e Use the Target Support Package™ FM5 HTML code generation report
to view a profiling report that includes detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of
the generated code. You can also easily examine the generated code via
hyperlinks in the code generation report.

The Code profile report is an additional section in the Real-Time
Workshop® Embedded Coder™ HTML Code Analysis (RAM/ROM) Report.
To generate the report,

Real-Time Workshop Pane: ET MPC5xx (Algorithm Export] Options

a On the Real-Time Workshop General pane, make sure Generate code
only is not selected.

b On the Real-Time Workshop Report pane, select Create Code
Generation report.

See Also

e Algorithm Export Target
e HTML Code Analysis (RAM/ROM) Report

6-3

6 Configuration Parameters

6-4

Use prebuilt (static) RTW Libraries

Use prebuilt rtwlib for faster build time.

Settings
Default: On

v On
Use prebuilt Real-Time Workshop® libraries. This saves a considerable
amount of time during the build process, as the libraries do not need to
be recompiled every time.

I off
Recompile libraries and do not use prebuilt libraries.

Command-Line Information

Parameter: STATIC_RTWLIB
Type: string

Value: 'on' | 'off'
Default: 'on'

See Also
Algorithm Export Code Generation Options

Real-Time Workshop Pane: ET MPC5xx (Processor-inthe-Loop) Options

Real-Time Workshop Pane: ET MPC5xx
(Processor-in-the-Loop) Options

Real-Time Workshop
Placerment I Data Type Replacement I termany Sections ET MPCBxx [processzor-in-the-loop] options | 'l | 3

Optimize compiler fnrlspeed LI

Cormnpiler optimization switchesl' =0

Build action; INDne ;I
™ Use prebuilt [static] BTw Libraries

In this section...

“ET MPC5xx (Processor-in-the-Loop) Options Tab Overview” on page 6-5
“Optimize compiler for” on page 6-6

“Compiler optimization switches” on page 6-7

“Build action” on page 6-8

“Use prebuilt (static) RTW Libraries” on page 6-9

ET MPC5xx (Processor-in-the-Loop) Options Tab
Overview

Specify compiler and build action code generation options for
processor-in-the-loop.

Configuration
This pane appears only if you specify the mpc555pil.tlc system target file.

See Also

® Processor-in-the-Loop Code Generation Options

e QOverview of PIL Cosimulation

6 Configuration Parameters

Optimize compiler for

Choose whether to optimize C compiler settings for fastest execution speed,
smallest code size, debugging, or custom settings.

Settings
Default: speed

speed

Optimize C compiler settings to minimize execution time.
size

Optimize C compiler settings to minimize code size.

debug
Optimize C compiler settings for debugging.

custom
Define your own optimization switches.

Tip

The exact effect of the optimization switches depends on whether you are
using the Wind River or CodeWarrior® compiler. Consult your compiler
documentation for specific optimizations.

Dependency

Setting this parameter changes the Compiler optimization switches to
the appropriate switches, which depend on the compiler used and may be
user-defined.

Command-Line Information

Parameter: MPC555 OPTIMIZATION_ SWITCH
Type: string

Value: 'speed' | 'size' | 'debug' | 'custom'
Default: 'speed’

See Also

Processor-in-the-Loop Code Generation Options

Real-Time Workshop Pane: ET MPC5xx (Processor-inthe-Loop) Options

Compiler optimization switches
Observe or edit compiler optimization switches.

Settings
Default: Depends on the toolchain, and also customizable — there are many
possibilities if you modify target preferences.

Tip

To apply changes to the current model only, you can edit the switches in the
Compiler optimization switches edit box (Optimize compiler for: changes to
custom). If you want to apply these changes to several models, you can edit
the defaults for these settings in the Target Preferences dialog box.

Dependency

Editing this parameter changes the Optimize compiler for to custom.

Command-Line Information

Parameter: MPC555_OPTIMIZATION_FLAGS

Type: string

Value: customizable — there are many possibilities if you modify target
preferences or make custom edits

Default: depends on toolchain.

See Also
Processor-in-the-Loop Code Generation Options

6 Configuration Parameters

6-8

Build action
Choose action to perform after build process completes.

Settings
Default: None

None
No action after code generation.

Launch_Download_Control_Panel
Launch Download Control Panel utility on completion of code generation.

Run_via_BDM
Download over BDM connection automatically starts on completion of
code generation. When the download is complete the code is run.

Debug_via_BDM
Download over BDM connection automatically starts on completion of
code generation. When the download is complete the code stops at the
first line in debug mode, so you can step through the code.

Command-Line Information

Parameter: BuildAction

Type: string

Value: 'None' | 'Launch_Download_Control_Panel' | 'Run_via_ BDM'
| 'Debug_via_BDM'

Default: 'None'

See Also
Processor-in-the-Loop Code Generation Options

Real-Time Workshop Pane: ET MPC5xx (Processor-inthe-Loop) Options

Use prebuilt (static) RTW Libraries
Use prebuilt rtwlib for faster build time.

Settings
Default: On

v On
Use prebuilt Real-Time Workshop® libraries. This saves a considerable
amount of time during the build process, as the libraries do not need to
be recompiled every time.

I off
Recompile libraries and do not use prebuilt libraries.

Command-Line Information

Parameter: STATIC_RTWLIB
Type: string

Value: 'on' | 'off'
Default: 'on'

See Also
Processor-in-the-Loop Code Generation Options

6-9

6 Configuration Parameters

Real-Time Workshop Pane: ET MPC5xx Real-Time Options
(1)

Real-Time Workshop
Replacement I Memom Sections ET MPCSxx realtime options (1] | ET MPCSxx realtime options [2] I 1 | ¥

Optimize compiler fnllspeed ;I

Compiler optimization switchesl' =0t
Target memony modeIIF!.-’-‘«M j

Bwild actionINnne j
¥ Use prebuilt RTW libraries

In this section...
“ET MPC5xx Real-Time Options (1) Tab Overview” on page 6-10

“Optimize compiler for” on page 6-11
“Compiler optimization switches” on page 6-12
“Target Memory Model” on page 6-13

“Build action” on page 6-15

“Use prebuilt RTW libraries” on page 6-16

ET MPC5xx Real-Time Options (1) Tab Overview

Specify compiler and build action code generation options for real-time
standalone execution.

Configuration
This pane appears only if you specify the mpc555rt.tlc or mpc555rt_grt.tlc
system target file.

See Also

¢ Real-Time Code Generation Options

6-10

Real-Time Workshop Pane: ET MPC5xx Real-Time Options (1)

® Generating Stand-Alone Real-Time Applications

Optimize compiler for

Choose whether to optimize C compiler settings for fastest execution speed,
smallest code size, debugging, or custom settings.

Settings
Default: speed

speed

Optimize C compiler settings to minimize execution time.
size

Optimize C compiler settings to minimize code size.

debug
Optimize C compiler settings for debugging.

custom
Define your own optimization switches.

Tip

The exact effect of the optimization switches depends on whether you are
using the Wind River or CodeWarrior® compiler. Consult your compiler
documentation for specific optimizations.

Dependency

Setting this parameter changes the Compiler optimization switches to
the appropriate switches, which depend on the compiler used and may be
user-defined.

Command-Line Information

Parameter: MPC555_OPTIMIZATION_SWITCH
Type: string

Value: 'speed' | 'size' | 'debug' | 'custom'
Default: 'speed’

6-11

6 Configuration Parameters

6-12

See Also
Real-Time Code Generation Options

Compiler optimization switches
Observe or edit compiler optimization switches.

Settings
Default: Depends on the toolchain, and also customizable — there are many
possibilities if you modify target preferences.

Tip

To apply changes to the current model only, you can edit the switches in the
Compiler optimization switches edit box (Optimize compiler for: changes to
custom). If you want to apply these changes to several models, you can edit
the defaults for these settings in the Target Preferences dialog box.

Dependency

Editing this parameter changes the Optimize compiler for to custom.

Command-Line Information

Parameter: MPC555_OPTIMIZATION_FLAGS

Type: string

Value: customizable — there are many possibilities if you modify target
preferences or make custom edits

Default: depends on toolchain.

See Also
Real-Time Code Generation Options

Real-Time Workshop Pane: ET MPC5xx Real-Time Options (1)

Target Memory Model
Select either FLASH or RAM.

Settings
Default: RAM

RAM
Generate files in a format suitable for downloading into external RAM.

FLASH
Generate files in a format suitable for downloading into the MPC555
on-chip flash memory.

In both cases these two files are generated, with this naming convention:

® model_flash.s19 or model_ram.s19 — code only, for CAN download

® model_flash.elf or model_ram.elf — for BDM download, containing
code and optional debugging symbols if you choose a debug build in the
Optimize compiler for settings.

Tips

¢ Loading the application code into RAM is faster than loading it into
flash memory. In addition, by using RAM you can avoid using up the
programming cycles of the flash memory; this lengthens the usable lifetime
of the flash memory. Running the application from RAM is a good option
for initial testing of the application.

¢ The MPC5xx flash memory has a limited lifetime, which is shortened each
time the flash memory is programmed. To extend product life, Freescale™
recommends using flash programming only when necessary.

¢ To program applications into RAM, your target hardware must have
additional RAM external to the MPC555 on-chip RAM. The Target Support
Package™ FM5 product does not support downloading of code to MPC5xx
on-chip RAM, because the MPC555 has only 26K of on-chip RAM and the
MPC565 has 36K.

6-13

6 Configuration Parameters

® For final deployment, or to load code onto a test board for use at a test site,
you will generally want to program your code into the nonvolatile flash
memory. 416K of flash memory is available for application code (992K
on the MPC565). Code programmed into flash memory is persistent and
restarts when the board is powered on.

Command-Line Information

Parameter: TARGET_MEMORY_MODEL
Type: string

Value: 'RAM' | 'FLASH'

Default: 'RAM'

See Also

e RAM vs. Flash Memory

¢ Overview of Memory Organization and the Boot Process

6-14

Real-Time Workshop Pane: ET MPC5xx Real-Time Options (1)

Build action
Choose action to perform after build process completes.

Settings
Default: None

None
No action after code generation.

Launch_Download_Control_Panel

Launch Download Control Panel utility on completion of code generation.

Run_via_BDM
Download over BDM connection automatically starts on completion of
code generation. When the download is complete the code is run.

Debug_via_BDM
Download over BDM connection automatically starts on completion of
code generation. When the download is complete the code stops at the
first line in debug mode, so you can step through the code.

Command-Line Information

Parameter: BuildAction

Type: string

Value: 'None' | 'Launch_Download_Control_Panel' | 'Run_via_ BDM'
| 'Debug_via_BDM'

Default: 'None'

See Also
Real-Time Code Generation Options

6-15

6 Configuration Parameters

6-16

Use prebuilt RTW libraries
Use prebuilt rtwlib for faster build time.

Settings
Default: On

v On
Prebuilt Real-Time Workshop® libraries, compiled with default compiler
switches, are linked against during compilation of the generated code.
This saves a considerable amount of time during the build process, as
the libraries do not need to be recompiled every time.

I off
The source modules that comprise these libraries are compiled
individually in the model build directory, using the currently selected
compiler switches.

Command-Line Information

Parameter: STATIC_RTWLIB
Type: string

Value: 'on' | 'off'
Default: 'on'

See Also
Real-Time Code Generation Options

Real-Time Workshop Pane: ET MPC5xx Real-Time Options (2)

Real-Time Workshop Pane: ET MPC5xx Real-Time Options
(2)

Real-Time Workshop
Feplacement Memary Sections ET MPCSxx realtime options (1] ET MPCExx real-time options [2] | [l | 3

b aimum number of concunent baze-rate ovenuns: |5

M aimum number of concunent sub-rate overungs: IEI

™ Execution profiing

Murber of data points: IEDD

In this section...
“ET MPC5xx Real-Time Options (2) Tab Overview” on page 6-17

“Maximum number of concurrent base-rate overruns” on page 6-17
“Maximum number of concurrent sub-rate overruns” on page 6-18

“Execution profiling” on page 6-20

“Number of data points” on page 6-20

ET MPC5xx Real-Time Options (2) Tab Overview

Control execution profiling and scheduling overrun behavior.

Configuration

This pane appears only if you specify the mpc555rt.tlc or mpc555rt _grt.tlc
system target file.

See Also

* MPC5xx Options for Execution Profiling

e Execution Profiling

Maximum number of concurrent base-rate overruns
Configure allowable base-rate overruns.

6-17

6 Configuration Parameters

6-18

Settings
Default: 5

Minimum: 0

Maximum: No maximum value — it depends on available memory.

Tips

Use this option to configure the behavior of the scheduler when timer based
tasks do not complete within their allowed sample time.

It is useful to allow task overruns in the case where a task may occasionally
take longer than usual to complete (e.g. if extra processing is required
when a special event occurs); if the task overrun is only occasional then it
is possible for the scheduler to 'catch up’ after the extra processing has
been completed.

If the maximum number of concurrent overruns for any task is exceeded,
this is deemed to be a failure and the real-time application is stopped.
This in turn will result in a watchdog timer timeout and the processor
will be reset.

The occurrence of base-rate overruns does not affect the numerical behavior
of the algorithm (although reading/writing external devices will of course
be delayed).

Command-Line Information

Parameter: BaseRateMaxOverrunsValue
Type: int

Value: 0 | 1 | 2...

Default: 5

See Also
MPC5xx Options for Execution Profiling

Maximum number of concurrent sub-rate overruns

Configure allowable sub-rate overruns.

Real-Time Workshop Pane: ET MPC5xx Real-Time Options (2)

Settings
Default: 0

Minimum: 0

Maximum: No maximum value — it depends on available memory.

Tips

If this option is set to a value greater than zero, then the behavior of any
Rate-Transition blocks may be affected. Specifically, if the model contains a
Rate Transition block where the option "Ensure deterministic data transfer
(maximum delay)" is selected, then this setting may not be honored.

If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this

causes the numerical behavior in real-time to differ from the behavior

in simulation. To see an illustration of this effect try running the demo
model mpc555rt_multitasking. To disallow sub-rate overruns and ensure
that this effect does not occur, you should set Maximum number of
concurrent sub-rate overruns to zero.

Command-Line Information

Parameter: SubRateMaxOverrunsValue
Type: int

Value: 0 | 1 | 2...

Default: 0

See Also
MPC5xx Options for Execution Profiling

6-19

6 Configuration Parameters

6-20

Execution profiling

Specify whether to configure code for execution profiling.

Settings
Default: Off

¥ On
Include function calls in the generated code for the model at the
beginning and end of each task or asynchronous Interrupt Service
Routine (ISR) to be profiled. When you perform an execution profiling
run, these function calls read a timer and log this reading, along with
a task identifier, for uploading and analyzing.

I ofr

Do not add function calls for execution profiling.

Tip

When code for the model is generated, these function calls update data on
the worst-case turnaround time for each timer-based task as well as the
worst-case number of concurrent task overruns, whenever a previous worst
case value is exceeded. Additionally, when a trigger is provided, data can be
logged over a period of time to record all task start and task finish times. The
trigger signal can be supplied by the execution profiling blocks.

Dependency

This parameter enables Number of data points.

See Also

¢ Execution Profiling

e MPC5xx Options for Execution Profiling

Number of data points

Specify number of data points to log for execution profiling runs.

Real-Time Workshop Pane: ET MPC5xx Real-Time Options (2)

Settings
Default: 500

Minimum: This depends on the number of tasks. Three is a sensible
minimum to get useful information back.

Maximum: No maximum value - it depends on available memory.

Tip

When a snapshot of task and ISR activity is logged this data is stored in
memory that is statically allocated at build time. Each data point requires 8
bytes on the MPC555. The larger the number of data points to be stored, the
more RAM that must be reserved for this purpose. At the end of a logging run,
the data must be uploaded to the host computer for analysis; this is typically
achieved by using the execution profiling blocks.

Dependency

This parameter is enabled by Execution Profiling.

Command-Line Information

Parameter: ExecutionProfilingNumSamples
Type: int

Value: 3 | 4 | 5...

Default: 500

See Also

® Mpchxx Options for Execution Profiling

¢ Execution Profiling

6-21

6 Configuration Parameters

6-22

Toolchains and Hardware

This section discusses specific settings for different cross-development

environments:

Setting Up Your Toolchain (p. A-3)

Setting Up Your Installation with
Wind River Compiler and Wind River
Systems SingleStep™ Debugger

(p. A-4)

Setting Up Your Installation with
Freescale™ CodeWarrior® (p. A-9)

Setting Up Your Target Hardware
(p. A-13)

CAN Hardware and Drivers (p. A-20)

You must first install and configure
your toolchain to work with the
Target Support Package™ FM5
product. This section describes the
steps for configuring the WindRiver
or Freescale™ CodeWarrior®
development tools.

Configuring the Target Support
Package FM5 product for use with
the Wind River development tools

Configuring the Target Support
Package FM5 product for use
with the Freescale CodeWarrior
development tools.

Configuring the required connections
and jumper settings for MPC5xx
development boards.

Configuring supported CAN
hardware and software.

A Toolchains and Hardware

Configuration for Nondefault
Hardware (p. A-22)

Integrating External Blocksets
(p. A-26)

Manual configuration for different
MPC5xx hardware, including
altering boot code and tool
configurations for different hardware
clock speeds, ports, and boards.

How to configure the makefile to
integrate custom precompiled block
libraries with the MPC5xx build

process.

Setting Up Your Toolchain

Setting Up Your Toolchain

The currently supported toolchains are WindRiver (Wind River Compiler and
Wind River Systems SingleStep™) and Freescale™ CodeWarrior®. You must
first install and configure your toolchain to work with the Target Support
Package™ FMS5 product. The necessary steps are described in the following
sections:

e “Setting Up Your Installation with Wind River Compiler and Wind River
Systems SingleStep™ Debugger” on page A-4

¢ “Setting Up Your Installation with Freescale™ CodeWarrior®” on page A-9

A

Toolchains and Hardware

Setting Up Your Installation with Wind River Compiler and
Wind River Systems SingleStep™ Debugger

In this section...

“Required Hardware and Software” on page A-4

“Procedure” on page A-4

Required Hardware and Software

To use the Target Support Package™ FM5 product with the Wind River
Compiler, you need the following:

e An MPC5xx development board (such as the phyCORE-MPC555
development board, or an Axiom board) and a debugger connector (such
as the WindRiver visionPROBE or the BDM Wiggler from Macraigor
Systems). Note the phyCORE-MPC555 board comes with built-in debugger
connector into which you can directly plug a parallel port connector, in
which case you may not require a BDM connector. See “Setting Up Your
Target Hardware” on page A-13.

¢ Wind River Systems Wind River Compiler and Wind River Systems
SingleStep™ debugger, as detailed in “Supported Cross-Development
Tools” on page 1-16.

Procedure

® “Install Wind River Compiler” on page A-5
¢ “Install Wind River Systems SingleStep™ Debugger” on page A-5

o “Setting Target Preferences for Wind River Compiler and Wind River
Systems SingleStep™” on page A-5

e “Initialize visionPROBE” on page A-7
® “Configure MPC5xx Jumpers” on page A-8

Setting Up Your Installation with Wind River Compiler and Wind River Systems SingleStep™ Debugger

Install Wind River Compiler

If you have not already done so, install the Wind River Compiler, following the
installation instructions provided by Wind River Systems.

You do not need to set a default processor or other compiler defaults. During
the code generation and build process, the Target Support Package FM5
product will generate a makefile that sets the correct options.

You will need to note the path to the installed compiler in order to configure
your target preferences (see “Setting Target Preferences for Wind River
Compiler and Wind River Systems SingleStep™” on page A-5).

Install Wind River Systems SingleStep™ Debugger

The Wind River Systems SingleStep debugger, in conjunction with the Target
Support Package FM5 product, lets you download, run and debug generated
code.

Follow the instructions of the Wind River Systems SingleStep installer.

To resolve questions or difficulties with Wind River Systems SingleStep, refer
to the documentation, or contact Wind River Systems.

You will need to note the path to the installed Wind River Systems SingleStep
debugger in order to configure your target preferences (see “Setting Target
Preferences for Wind River Compiler and Wind River Systems SingleStep™”
on page A-5).

Setting Target Preferences for Wind River Compiler and Wind
River Systems SingleStep™

After installing your development tools, the next step is to configure your
target preferences for the Wind River Compiler and Wind River Systems
SingleStep debugger. (Please read “Setting Target Preferences” on page 1-18,
if you have not yet done so.)

1 Select Start > Links and Targets > Target Support Package
FMS5 > Target Preferences.

A-5

A Toolchains and Hardware

A-6

This opens the Target Preferences GUI where you can edit the settings for
your cross-development environment.

2 Select Diab from the Toolchain menu (the Wind River Compiler was
formerly known as Diab).

3 Expand the ToolChainOptions by clicking the plus sign,
and type the correct path into CompilerPath. For example
"d:\applications\WindRiver\4.3g".

4 For Wind River Systems SingleStep you must also type the correct path
into DebuggerPath. For example "d: \applications\sds".

5 The defaults for DebuggerSwitches and DebuggerExecutable are set
up for use of Wind River Systems SingleStep (using a visionPROBE BDM
connection). You may need to change LPT1 to whatever port you connect to.
Note, once you have set target preferences, you must initialize the device.
See “Initialize visionPROBE” on page A-7.

6 To use any other BDM device than the visionPROBE (such as the Wiggler,
Raven/Blackbird or OnBoard BDM with Wind River Systems SingleStep),
you must change two target preferences from the defaults:

a Change the DebuggerSwitches target preference to the following:
-g -V mpc555 -r - -p LPT1=1

If necessary you can change LPT1 to whatever port you connect the
probe to.

b Change the DebuggerExecutable from the default to:

bdmp58.exe

Setting Up Your Installation with Wind River Compiler and Wind River Systems SingleStep™ Debugger

5 ToolChainOptions mpcS45.DiabOptions

-+ CompilerCptimizationSwitches mpcasa. CampilerOptimizationSwitches
Debug -q
Size -KO -Xsize-opt
Speed Era]

— CompilerPath diapplicationswdiabig.3g

— DebuggerExecutable hdmpal exe

— DehuggerPath diapplications\sds

— DebugoerSwitches -0 =Y mpeasa -r- -p LPT1=1

The DebuggerSwitches target preference is specific to Wind River Systems
SingleStep. If you want to change the default debug settings, type

help debug

at the Wind River Systems SingleStep command line to see the options
available. For example you can change parallel port here. The default is -p
LPT1=1 which specifies port 1 on your host PC at speed 1. You could change it
to -p LPT2=2 to specify port 2 at speed 2.

Other debugger executables are supplied with Wind River Systems SingleStep
— if you want to change the defaults to use a different connection device

and different debug settings, consult the Wind River Systems SingleStep
documentation.

Note that the path to the Wind River Systems SingleStep debugger, specified
in DebuggerPath in the Target Preference GUI, is the root directory of your
Wind River Systems SingleStep installation, on either an actual hard drive
on your PC, or a mapped drive. Do not use a Universal Naming Convention
(UNC) path. For most purposes, the other target preferences fields can be
left at their defaults. Once you have set these target preferences, the build
process will automatically invoke your compiler and debugger when required
for downloading code.

Initialize visionPROBE

Before using the visionPROBE (and after setting target preferences) you must
initialize the device using the MATLAB® Start menu. Select Start > Links
and Targets > Target Support Package FMS5 > Initialize visionPROBE
for Selected Target Board (WindRiver Only).

A-7

A Toolchains and Hardware

A-8

If you change target processor you will have to initialize again using the same
Start menu item.

Note that for the visionPROBE you must configure the parallel port BIOS
settings as follows:

e ECP mode
¢ Enabled (as opposed to Auto)

¢ IRQ and address of the parallel port specified in the BIOS must match
that in the visionPROBE comdl1.cfg file - edit the cfg file if necessary.
Default parallel port I/O address = 0x378; IRQ=7, communicating over
PAR1 (LPT1).

Configure MPC5xx Jumpers

Make sure that the jumpers on the MPC5xx board are set as described in
“Jumper Settings” on page A-14. The correct jumper configuration is required
when downloading to flash memory. Any other jumper settings may cause
downloading to flash memory to fail, or cause other problems when operating
with the Target Support Package FM5 product. For additional information
on jumper settings, consult the MPC5xx documentation and the Wind River
Systems SingleStep manual.

The next step is to verify your installation:

1 You can download and run the test program supplied. See “Run Test
Program” on page 1-25.

2 You must then follow the instructions to download boot code (“Download
Boot Code to Flash Memory” on page 1-25). Once you have completed
these steps, you can begin working with the Target Support Package FM5
product.

Setting Up Your Installation with Freescale™ CodeWarrior®

Setting Up Your Installation with Freescale™ CodeWarrior®

In this section...

“Required Hardware and Software” on page A-9

“Procedure” on page A-9

Required Hardware and Software

To use the Target Support Package™ FM5 product with Freescale™
CodeWarrior®, you need the following:

An MPC5xx development board (such as the phyCORE-MPC555
development board) and a debugger connector (such as the BDM Wiggler
from Macraigor Systems). Note the phyCORE-MPC555 board comes with
built-in debugger connector which you can plug a parallel port connector
into directly, in which case you may not require a BDM connector.

Freescale CodeWarrior Development Studio, MPC5xx Edition, as detailed
in “Supported Cross-Development Tools” on page 1-16.

Procedure

“Install Freescale™ CodeWarrior® IDE” on page A-9
“Configure Freescale™ CodeWarrior® Debugger” on page A-10
“Set Target Preferences for CodeWarrior®” on page A-11

“Configure MPC5xx Jumpers” on page A-12

Install Freescale™ CodeWarrior® IDE

T

he first step is to install the Freescale CodeWarrior IDE:

If you have previously installed an older version of Freescale CodeWarrior
for Embedded PowerPC , uninstall it.

2 Install Freescale CodeWarrior Development Studio, MPC5xx Edition, v8.7

using the setup program provided on your Freescale CodeWarrior CD (or on
your network). Run Setup.exe and follow the prompts.

A Toolchains and Hardware

A-10

3 Open CodeWarrior IDE. You can use the Windows® Start menu (Start >
Programs > CodeWarrior > CodeWarrior IDE).

4 Select Edit > Preferences > Build Settings > Build Before Running
5 Select the option Never and click Apply.

It is vital you set this to avoid errors when building and automatically
downloading code with the Target Support Package FM5 product.

Configure Freescale™ CodeWarrior® Debugger

The next step is to configure the CodeWarrior debugger to communicate with
the MPC5xx board over the parallel port:

1 From the Freescale CodeWarrior IDE, select the Edit menu, and open the
IDE Preferences dialog box. In the IDE Preference Panels pane, click
on the plus sign next to Debugger.

2 A list of choices opens below Debugger. Select Remote Connections. The
Remote Connections panel is displayed on the right.

3 If no MPC555DK Wiggler configuration exists, create one as follows:

a Click the Add... button. The New Connection configuration dialog box
opens. Set the Name property to MPC555DK Wiggler.

b If you are using a Raven or Blackbird BDM device, set the Debugger
property to EPPC - MSI BDM Raven.

¢ Ifyou are using a Wiggler or On-Board BDM, set the Debugger property
to EPPC MSI Wiggler.

d Set the Connection Type property to Parallel.

e Set the Connection Port property to match the port to which you have
connected your MPC5xx board (the default is LPT1).

f Set the Speed property to 1.
g Set the FPU Buffer Address property to 0x3f9800.
h Click OK and skip to step 5.

Setting Up Your Installation with Freescale™ CodeWarrior®

4 If a MPC555DK Wiggler exists, click the Change button. The MPC555DK
Wiggler configuration dialog box opens. By default, the Parallel Port
property is set to LPT1. If you have connected your MPC5xx board to a
different port, change the Parallel Port setting accordingly. Then click OK
to close the MPC555DK Wiggler configuration dialog box.

5 Click Apply and close the IDE Preferences dialog box.

Set Target Preferences for CodeWarrior®

The next step is to configure your target preferences for Freescale
CodeWarrior. (Please read “Setting Target Preferences” on page 1-18, if you
have not yet done so). Follow these steps:

1 Select Start > Links and Targets > Target Support Package
FMS5 > Target Preferences

This opens the Target Preferences GUI where you can edit the settings for
your cross-development environment.

2 Select CodeWarrior from the Toolchain menu.

3 Expand the ToolChainOptions by clicking the plus sign, and type the
correct path into CompilerPath. Do not use a UNC path, use only local or

mapped drives.
Note that when using CodeWarrior, you do not also have to specify the

DebuggerPath, as the compiler and debugger are integrated. When required,
the build process will automatically invoke the CodeWarrior debugger.

For most purposes, the other target preferences fields can be left at their
defaults.

A-11

A Toolchains and Hardware

A-12

Note If you have multiple versions of the CodeWarrior IDE installed, the
version launched by Target Support Package FM5 may not be the version you
expect. The CodeWarrior IDE is launched using the CodeWarrior COM API,
and depends on installation order, not your setting in the Target Preferences.
You can correct this problem by running the regservers.bat script, which is
located in the bin directory of your CodeWarrior installation. This registers
the correct CodeWarrior application to be launched.

Configure MPC5xx Jumpers

Make sure that the jumpers on the MPC5xx board are set as described in
“Jumper Settings” on page A-14. The correct jumper configuration is required.

The next step is to verify your installation.

1 You can download and run the test program supplied. See “Run Test
Program” on page 1-25.

2 You must then follow the instructions to download boot code (“Download
Boot Code to Flash Memory” on page 1-25). Once you have completed
these steps, you can begin working with the Target Support Package FM5
product.

Setting Up Your Target Hardware

Setting Up Your Target Hardware

In this section...

“Communications Ports” on page A-13

“Jumper Settings” on page A-14

This section describes the required connections and jumper settings for
the following development boards: Phytec phyCORE-MPC555, the Phytec
MPC565 and the Axiom MPC555, MPC564, and MPC566.

If you are using other development boards you may need to see “Configuration
for Nondefault Hardware” on page A-22.

Communications Ports

Before you begin working with the Target Support Package™ FMS5 product,
you should set up your target board and connect it to your host computer.
For example, the hardware setup is described in the phyCORE-MPC555
Quickstart Instructions manual on the Phytec Spectrum CD. See the
"Interfacing the phyCORE-MPC555 to a Host PC" section of the "Getting
Started" chapter.

In this document, we assume that you have connected your board to the same
serial (COM1) and parallel (LPT1) ports described in the phyCORE-MPC555
Quickstart Instructions. Note that you must ensure your computer’s LPT
parallel port for BDM interface is set to EPP mode and Auto (as opposed to
Enabled). This is generally a BIOS level configuration. If you are using a
visionPROBE you must configure the parallel port as detailed in “Initialize
visionPROBE” on page A-7.

A-13

A Toolchains and Hardware

A-14

Jumper Settings

Note You MUST check your jumper settings. Do not assume hardware is
supplied with jumpers set as documented by the manufacturer. Incorrect
operation or even hardware damage may occur if you do not check jumper
settings.

Use the following settings for these boards:

® “Phytec MPC555 Jumper Settings” on page A-14
® “Phytec MPC565 Jumper Settings” on page A-17
* “Axiom MPC555 Jumper Settings” on page A-18
* “Axiom MPC564EVB Jumper Settings” on page A-19
* “Axiom MPC566EVB Jumper Settings” on page A-19

Phytec MPC555 Jumper Settings

The Target Support Package FM5 product has been tested by the MathWorks
with the Phytec phyCORE-MPC555 board, using the jumper settings
indicated in the table below. We have tested the PCB 1174.0 board. If you are
using a PCB 1174.2 board you may also have to alter settings such as jumper
19. Please see your Phytec development board manual for details.

For jumper locations and pin numbers, see Jumper Layout section of the
Development Board for phyCORE-MPC555 Hardware Manual, "L-525E . pdf"
found at

http://www.phytec.de/manuals
The following table summarizes the correct jumper settings to use when your

host PC is connected to the on-board BDM port, or via visionPROBE, Wiggler,
Raven, or Blackbird devices.

http://www.phytec.de/manuals

Setting Up Your Target Hardware

visionPROBE,
Raven On-Board
Jumper Description or Blackbird Wiggler BDM
JP1 On-board BDM Open as Raven 3+4 closed
reset signal
connection
JP2 Power supply for | Open (unless BDM | 1+2 closed 1+2 closed
external BDM device requires
supply voltage
from development
board)
JP3 Connect push 1+2 (/HRESIN as Raven as Raven
button to different | connected to push
reset signals button)
JP4 Programming of Closed as Raven as Raven
Internal MPC555
Flash internal
memory enabled
JP5,JP7, Jumpers relating | Open as Raven All closed
JP8,JP9 to on-board BDM
JP6 See note below. Open as Raven Closed
JP10 Connect one of the | Closed as Raven as Raven
LEDs to supply
voltage
JP11 Connect 5V supply | Closed as Raven as Raven
voltage
JP12 Connect 3V3 Closed as Raven as Raven
supply voltage
JP13 CAN A bus Closed (apply 120 | as Raven as Raven
termination Ohm termination)
JP14 CAN B bus Closed (apply 120 | as Raven as Raven
termination Ohm termination)

A-15

A Toolchains and Hardware

A-16

visionPROBE,
Raven On-Board
Jumper Description or Blackbird Wiggler BDM
JP15 Select boot 1+2 (boot from as Raven as Raven
memory internal flash
memory)
JP16 Use J5 as source Open as Raven as Raven
of Hard-Reset-
Configuration
JP17 Connect /HRESET | 1+2 (/HRESET as Raven as Raven
or /SRESET to connected to BDM
external BDM interface logic)
interface logic
JP18 Connect interrupt | Default 1+2 as Raven as Raven
to push button
JP19 See note below.

Note Jumper 6 must be open unless using an On-Board BDM.

When using the On-Board BDM connection, if you then want to run the
target stand-alone (disconnected from the debugger) you must also disconnect
(open) jumper 6. This only affects the on-Board BDM, all other configurations
always have jumper 6 open. Use the On-Board BDM settings in the table if
you are using the BDM connection for debugging, but remember you must
make this change to run stand-alone:

For debugging: Jumper 6 must be closed (target stops always in debug mode
after reset); connect parallel cable to target.

For stand-alone: Jumper 6 must be open (target runs in normal mode after
reset); disconnect parallel cable from target.

Setting Up Your Target Hardware

Note The jumper 19 setting may need to be altered if you are using a PCB
1174.2 board. See the Phytec documentation for more information.

Phytec MPC565 Jumper Settings
These settings are for EXTERNAL BDM device only, NOT On-Board BDM.

Make sure you use the default Phytec documented MPC565 jumper settings
and the following additional changes :

General:

JP28: 2-3

JP29: Closed

BDM Related:

JP32: Open

JP33: Open

JP34: Open

JP35: Open

JP36: Open

JP37: Open

JP38: Open

Additional warning - JP20:
Closing JP20 on the Phytec MPC565 development board connects the MPC565

MDAZ27 to the ZZ - "Snooze Enable of the burst-RAM". If you wish to use
MDAZ27 on the MPC565 development board then JP20 must be left open.

A-17

A Toolchains and Hardware

A-18

Please either do not use module 27 with the MIOS Waveform Measurement
block or open JP20 on your development board.

Jumper 33 warning: When using the onboard BDM and the download
control panel of the Target Support Package FM5 product, you might see the
download timeout as the target is halted, if Jumper 33 is not correctly set.
Perform these debugging steps:

¢ If you download code for debugging: Connect parallel cable to target and
make sure Jumper 33 is closed (target stops always in debug mode after
reset).

e If you download code for stand-alone execution: Disconnect the parallel
cable from the target and make sure Jumper 33 is open (target runs in
normal mode after reset).

¢ If you cannot download code, but can debug:
¢ Check if you are using the onboard BDM.

d Check the setting of Jumper 33 and state of parallel cable, as stated
above.

e If this does not resolve the issue, check the other jumper settings.

Axiom MPC555 Jumper Settings

These jumper settings work with an external BDM device.

Make sure you use the default Axiom documented jumper settings and the
following additional changes:

Config Switch

. Off
: On
. Off
: On
: On
: On

YO W

Mode Switch 1 Mode Swiich 2 Other

1: Off 1: On M-SEL Jumper - Open

2 : Off 2: Off FLSH-SEL Jumper - Open
3: Off 3: Off RAM-SEL Jumper - 2 Closed
4 : Off 4 : Off MEM-OPT Jumper - 5, 7

5: Off 5: Off Closed

6 : Off 6 : Off

7. Off 7 . Off

8 : Off 8 : Off

Setting Up Your Target Hardware

Axiom MPC564EVB Jumper Settings

These settings work with an external BDM device.

Make sure you use the default Axiom documented jumper settings and the
following additional changes:

MAP_SW CONFIG_SW
1: off 1: on
2: on 2: off
3: on 3: on
4: off 4: off
5: on 5: off
6: on 6: off
7: on 7: on
8: on 8: on

Axiom MPC566EVB Jumper Settings

Make sure you use the default Axiom documented jumper settings and the
following additional changes:

MAP_SW CONFIG_SW
5: off 7: on
8: on 8: on

CSO > Ext_Flash

CS1 > Ext_ SRAM

IP bit off (execute from 0x0000 0100 on reset)
Internal chip Flash enabled

Check the oscillator frequency Target Preference is configured correctly to
4MHz for the 566 board (check the board manual).

A-19

A Toolchains and Hardware

A-20

CAN Hardware and Drivers

In this section...

“Configuring CAN Channels” on page A-20
“Creating and Assigning Application Channels” on page A-20

Configuring CAN Channels

Similarly to the Vector CAN blocks, the Download Control Panel is based on
the Vector CAN Driver Programming Library. The Download Control Panel
uses the Application Channel mechanism used by the Vector CAN Blocks.

You can use the CAN Driver Configuration Tool from Vector to select a
CAN channel (installed CAN hardware or a virtual CAN channel) and set the
speed of the connection. You can access this tool by clicking Configure on
the Communication Options tab of the Download Control Panel. Also this tool
is opened automatically when you open the Vector CAN Configuration block
if you have installed Vector drivers.

Creating and Assigning Application Channels

1 Open the Download Control Panel by selecting Start > Links and
Targets > Target Support Package FM5 > Download RAM / FLASH
Based Application (via CAN / Serial).

2 On the Communications Options tab, select CAN from the Connection
type drop-down menu.

3 Select from the drop-down menu one of the MATLAB® application channels
(1-10).

Use the Vector CAN Driver Configuration Tool to create and assign the
selected MATLAB application channel to the required CAN hardware
device or virtual channel as follows.

4 Click Configure on the Download Control Panel to open the Vector CAN
Driver Configuration Tool.

CAN Hardware and Drivers

5 Click App. Settings in the Vector CAN Driver Configuration Tool.

6 Click Add in the Application Settings dialog that appears.

7 Enter MATLAB in the edit box for the new application name and click OK.
8 Click Done to leave the Application Settings dialog.

9 Click to select the CAN hardware device or virtual channel you want to use
(for example, Channel 1 of a CAN-AC2-PCI card).

10 Click Assign to application (or right-click on the required channel).

11 Select MATLAB 1 or MATLAB 2 from the list.

Make sure you select the same MATLAB application channel in the Vector
CAN Configuration block. If your model requires more than one application
channel take care to assign a different channel to each Vector CAN
Configuration block.

See the Vector Help for the CAN Driver Configuration Tool to find out more
about how to select the CAN channel, bit rate, synchronization jump width,
sample point and number of samples per bit.

Please refer also to the following section of the Vector CAN Blocks
documentation in order that you configure your hardware and software

drivers correctly:

CAN Blockset Reference Vector CAN Configuration.

A-21

A Toolchains and Hardware

Configuration for Nondefault Hardware

In this section...

“Hardware Clock Configuration” on page A-22

“Other Configuration Changes for Nondefault Hardware” on page A-24

The Target Support Package™ FM5 product has been developed and fully
tested using the development boards described in “Setting Up Your Target
Hardware” on page A-13. We recommend the use of these boards for
getting started with the target support package. If you are using different
MPC5xx hardware, it may be necessary to perform some additional manual
configuration.

The following sections provide information about where to make changes for
hardware clock configuration and other hardware-specific configurations.

Hardware Clock Configuration

The Target Support Package FM5 product uses the Periodic Interrupt Timer
(PIT) to support a range of sample times. Note that the PIT is driven by the
crystal frequency. This results in the following possible sample time ranges:

For a crystal frequency of 20Mhz:

¢ Fastest sample time = 1.28e-5 seconds.

¢ Slowest sample time = 0.8388 s.
For a crystal frequency of 4 MHz:

® Fastest sample time = 6.4e-5 s.

¢ Slowest sample time = 4.1942 s.

Note that if you select a sample time slower than the slowest possible for your
clock frequency, Simulink® issues a warning message.

Also note that the fastest sample time may not be achievable because timer
overruns may occur, depending on your model.

A-22

Configuration for Nondefault Hardware

The Target Support Package FM5 product uses the main system oscillator
(OSCM) to provide the system clock. The OSCM uses either a 4-MHz or
20-MHz crystal to generate the PLL reference clock. The next section
describes how to configure the Target Support Package FM5 real-time target
for use on hardware with 4MHz crystal frequency (the default is 20 MHz).

Note External clock inputs are not supported.

Configuring for a Crystal Frequency Other Than 20 MHz
The MPC555 can operate with a crystal frequency of either 4 MHz or 20
MHz. By default, the Target Support Package FM5 product is configured
for a crystal frequency of 20 MHz.

You can use the Target Preferences to change to a 4MHz oscillator frequency.

1 Use the Start button to open the Target Preferences: Start > Links and
Targets > Target Support Package FM5 > Target Preferences.

2 Use the drop-down menu for OscillatorFrequency to change from 20
(the default) to 4.

3 Now install the appropriate bootcode for your hardware. Select
Start > Links and Targets > Target Support Package FM5 > Install
MPC5xx Bootcode.

The correct bootcode is installed for the oscillator frequency and processor
variant that you have selected in the Target Preferences. See the Target
Preferences section “Target Board” on page 1-22.

Note that you must also change the oscillator frequency and processor
variant in your models. Use the Resource Configuration block. The oscillator
frequency and processor set here must match the Target Preferences, or you
will see warnings.

The default value for Oscillator_Frequency is 20. If you are using 4MHz
hardware, you must change the value for Oscillator_ Frequency to 4 in
every model.

A-23

A Toolchains and Hardware

A-24

See also System Clock and Related Parameters System Clock and Related
Parameters for information on changing the system clock speed, and the block
Switch Target Configuration to easily switch between a selection of preset
target configurations with different processors and system frequencies.

Other Configuration Changes for Nondefault
Hardware

Depending on your target hardware, it may be necessary to make changes to
configure settings such as the size and type of external memory.

If you are downloading using the Freescale™ CodeWarrior® development
environment, the relevant hardware configuration settings are contained in
matlabroot\toolbox\rtw\targets\mpc555dk\mpc555dk\ :

@codewarrior_tgtaction\mpc5xx_osc20.cfg
@codewarrior_tgtaction\mpc5xx_osc4.cfg

If you are downloading using the Wind River Compiler and Wind River
Systems SingleStep™ development environment, the configuration settings
are contained in matlabroot\toolbox\rtw\targets \mpc555dk \mpc555dk\:

@diab_tgtaction\mpc5xx_osc20.cfg
@diab_tgtaction\mpc5xx_osc4.cfg
@diab_tgtaction\mpc555.wsp

Note that there is now only one Wind River Systems SingleStep workspace
file for RAM and flash memory.

The necessary changes to these files depend on the hardware that you are
using. Depending on your hardware, you may also need to configure switches
and jumper settings. Consult the documentation for your development board.

If you are generating stand-alone real-time applications, you may also need
to make changes to settings that are contained in the startup code. These
are contained in

matlabroot\toolbox\rtw\targets\mpc555dk\drivers\src\applications
\bootcode\bootcode_init.s.t

Configuration for Nondefault Hardware

Note that after making any changes to bootcode init.s.t, you must
recompile the boot code as described in “Rebuilding the Boot Code and Device
Driver Libraries” on page 2-28.

A-25

A Toolchains and Hardware

Integrating External Blocksets

A-26

In this section...

“Introduction” on page A-26

“Example External Blockset Directory Structure and rtwmakecfg.m” on
page A-27

Introduction

You can configure a rtwmakecfg.m file to seamlessly integrate custom
third-party Simulink® blocks with the Target Support Package™ FM5
product. You must provide the rtwmakecfg.m file along with the third party
S-function block DLLs and associated files. rtwmakecfg.m files are widely
used throughout the Real-Time Workshop® Embedded Coder™ product and
they allow you to:

¢ Specify include paths to add to the list of includes used in the generated
makefiles.

¢ Specify precompiled libraries to add to the list of libraries used in the
generated makefiles.

¢ Specify TLC include paths to be searched for block TLC files during code
generation.

For a general explanation of how to use rtwmakecfg.m files, please see the
section "Customizing and Creating Template Makefiles" in the Developing
Embedded Targets for Real-Time Workshop Embedded Coder documentation.

For a detailed explanation of using the rtwmakecfg.m file please consult
the section on "Using the rtwmakecfg.m API" in the Real-Time Workshop®

documentation.

The next section contains a detailed explanatory example for the MPCb5xx
build process.

These steps are required:

¢ Add the location of the rtwmakecfg.m file to the MATLAB® path.

Integrating External Blocksets

® Make sure this file is located in the same directory as the S-function DLLs.

Example External Blockset Directory Structure and
riwmakecfg.m

To understand how the rtwmakecfg.m file works, imagine a set of S-functions,
comprising a Simulink library, provided by an external supplier, and how they
can be integrated into the MPC5xx build process.

Example directory structure for an external (plugin) blockset:

C:\externalblocks
C:\externalblocks\tlc_c
C:\externalblocks\include
C:\externalblocks\1lib

Note: Only the root directory C:\externalblocks needs to be on the
MATLAB path.

C:\externalblocks will contain files such as:

® Rtwmakecfg.m — rtwmakecfg.m defining MPC5xx Plugins
® Blocklibrary.mdl — Simulink block library containing Sfun_a and Sun_b
e Sfun_a.mexw32 — S-function member of Blocklibrary.mdl

e Sfun_b.mexw32 — S-function member of Blocklibrary.mdl
C:\externalblocks\tlc_c will contain files such as:

e Sfun_a.c — S-function source for simulation.
e Sfun_b.c — S-function source for simulation.
e Sfun_a.tlc — S-function TLC for code generation

e Sfun_b.tlc — S-function TLC for code generation

Note: tlc_c directories in the same directory as the S-function DLLs are
automatically added to the TLC include path.

C:\externalblocks\include will contain files such as:

A-27

A Toolchains and Hardware

Blocksetheader.h — Header file used in the generated code

:\externalblocks\1lib will contain files such as:

Blocksetlibrary_5xx_ CODEWARRIOR.a and
Blocksetlibrary 5xx DIAB.a — Different versions of the library

are required depending on which toolchain is being used. The variable
mpc5xx_tool chain (see example rtwmakecfg.m below) enables different
versions of the library to be selected during the build process, based on
the target toolchain.

An example rtwmakecfg.m that will add the Blocksetheader.h parent
directory to the list of include paths and Blocksetlibrary_ToolChain.a to the
list of libraries follows:

A-28

o

s RTWMAKECFG adds include and source directories to rtw make files.

o

s makeInfo=RTWMAKECFG returns a structured array containing build info.

o°

Please refer to the rtwmakecfg API section in the Real-Time Workshop

o

s Documentation for details on the format of this structure.

% Get hold of the fullpath to this file, without the filename itself
rootpath = RTW.transformPaths(fileparts(mfilename('fullpath')));

% Get hold of the toolchain token to uniquely indentify libraries
prefs = RTW.TargetPrefs.load('mpc555.prefs');
mpc5xx_tool_chain = upper(prefs.ToolChain);

% External blocks need the following include path added
% Add the header file
makeInfo.includePath = { fullfile(rootpath, 'include') };

% External blocks reference the following precompiled library
% Add the precompiled libraries

makeInfo.linkLibsObjs = { fullfile(rootpath, 'lib',...

['Blocksetlibrary_' mpc5xx_tool_chain '.a']l) };

Examples

Use this list to find examples in the documentation.

Examples

Real-Time Target

“Tutorial: Creating a New Application” on page 2-5
“Using External Mode” on page 2-32

“ASAP2 File Generation Procedure” on page 2-42

“Data Acquisition (DAQ) List Configuration” on page 2-44

Processor-in-the-Loop Target

“Tutorial 1: Building and Running a PIL Cosimulation” on page 3-6
“Using the Demo Model In a PIL Cosimulation” on page 3-15

Algorithm Export Target
“Algorithm Export Target” on page 3-26

A

algorithm export 3-26
ASAP?2 files, generating 2-41
Asynchronous Rate Transition block 5-2

blocks
Asynchronous Rate Transition 5-2
CAN Calibration Protocol (MPC555) 5-4
MIOS Digital In 5-11
MIOS Digital Out 5-13
MIOS Digital Out MPWMSN) 5-15
MIOS Pulse Width Modulation Out 5-17
MIOS Waveform Measurement 5-21

MPC555 Execution Profiling via CAN A 5-24
MPC555 Execution Profiling via SCI1 5-27

MPC555 Resource Configuration 5-29
QADC Analog In 5-52
QADC Digital In 5-56
QADCE Analog In 5-59
QADCE Digital In 5-64
Serial Receive 5-66
Serial Transmit 5-69
Switch External Mode Configuration 5-71
Switch Target Configuration 5-73
TouCAN Error Count 5-74
TouCAN Fault Confinement State 5-75
TouCAN Interrupt Generator 5-77
TouCAN Receive 5-79
TouCAN Soft Reset 5-84
TouCAN Transmit 5-85
TouCAN Warnings 5-90
TPU Fast Quadrature Decode 5-96
TPU New Input Capture/Input Transition
Counter 5-100
TPU Programmable Time
Accumulator 5-105
TPU Pulse Width Modulation Out 5-108
TPU3 Digital In 5-91

TPUS3 Digital Out 5-93

TPUS3 Rectangular Wave 5-113
TPUS3 Square Wave 5-118
Watchdog 5-122

C

CAN Calibration Protocol (CCP) 5-4
CAN Calibration Protocol (MPC555) block 5-4
code analysis report 3-28
Configuration Class blocks 1-32
configuration parameters
pane
Build action 6-8 6-15
Compiler optimization switches 6-7 6-12
Execution profiling 6-20
Maximum number of concurrent
base-rate overruns: 6-17
Maximum number of concurrent sub-rate
overruns: 6-18
Number of data points: 6-20
Optimize compiler for 6-6 6-11
Target Memory Model 6-13
Use prebuilt (static) RTW Libraries 6-4
6-9
Use prebuilt RTW libraries 6-16
Real-Time Workshop Pane: ET MPCb5xx
(Algorithm Export) Options Tab 6-2
Real-Time Workshop Pane: ET MPCb5xx
(Processor-in-the-Loop) Options Tab 6-5
Real-Time Workshop Pane: ET MPCb5xx
Real-Time Options (1) Tab 6-10
Real-Time Workshop Pane: ET MPCb5xx
Real-Time Options (2) Tab 6-17
cosimulation 3-3

D

device driver blocks
input data types 1-30

Index-1

Index

input scaling 1-30 QADC Digital In block 5-56
MPC555 Serial Receive 5-66 QADCE Analog In block 5-59
MPC555 Serial Transmit 5-69 QADCE Digital In block 5-64
output data types 1-30
output scaling 1-30 R
downloading code to target 2-18)

application code 2-22 real-time target

to flash memory 2-23 introduction 2-3

to RAM 2-22 tutorial 2-5

code generation 2-10
example model for 2-7

M prerequisites for 2-6

MIOS Digital In block 5-11

MIOS Digital Out MPWMSN) block 5-15 S

MIOS Digital Out block 5-13

MIOS Pulse Width Modulation Out block 5-17 Serial Receive block 5-66

MIOS Waveform Measurement block 5-21 Serial Transmit block 5-69

MPC555 Execution Profiling via CAN A software-in-the-loop (SIL) simulation 3-19

block 5-24 Switch External Mode Configuration block 5-71

MPC555 Execution Profiling via SCI1 block 5-27 Switch Target Configuration block 5-73
MPC555 Resource Configuration block 5-29

MPC555 Target 1-1 T
target hardware setup
P communications ports A-13
PIL (processor-in-the-loop) cosimulation 3-3 Jjumper settings A-14
benefits of 3-3 Target Support Package™ FM5
getting started tutorial 3-6 feature summary 1-3
hardware connections for 3-6 TouCAN Error Count block 5-74
in plant/controller simulation 3-4 TouCAN Fault Confinement State block 5-75
preparation for 3-6 TouCAN Interrupt Generator block 5-77
technical overview of 3-4 TouCAN Receive block 5-79
PIL (processor-in-the-loop) target 3-3 TouCAN Soft Reset block 5-84
files and directories created by 3-22 TouCAN Transmit block 5-85
in cosimulation 3-15 TouCAN Warnings block 5-90
in SIL simulation 3-19 TPU Fast Quadrature Decode block 5-96
using in closed-loop simulation 3-19 TPU New Input Capture/Input Transition
Counter block 5-100
TPU Programmable Time Accumulator
Q block 5-105
QADC Analog In block 5-52 TPU Pulse Width Modulation Out block 5-108

Index-2

Index

TPU3 Digital In block 5-91 w
TPUS3 Digital Out block 5-93 Watchdog block 5-122
TPU3 Rectangular Wave block 5-113 watchdog timer 5-122

TPU3 Square Wave block 5-118

Index-3

	toc
	Getting Started
	Product Overview
	Introduction
	Feature Summary
	Production Code Generation
	Device Driver Support
	Code and Performance Analysis
	Applications Development and Rapid Prototyping
	Simulation and Cosimulation
	CAN Support
	Code Validation and Performance Analysis

	Applications for the Target Support Package FM5 Product
	Real-Time Execution and Rapid Prototyping
	Processor-in-the-Loop
	Algorithm Export

	Additional Blocks on MATLAB Central Web Site
	Prerequisites
	Using This Guide
	Installation
	Hardware and Software Requirements
	Operating System Requirements
	Hardware Requirements
	Software Requirements
	Required and Related MathWorks Products
	Supported Cross-Development Tools

	Setting Up and Verifying Your Installation
	Setting Target Preferences
	Configuring the Target Support Package FM5 Product for Your Cros
	Serial Communications
	Target Board
	Compiler Optimization Switches
	Debugger Switches

	Run Test Program
	Download Boot Code to Flash Memory
	Installing Bootcode via BDM and Serial or CAN
	Installing Bootcode Without a BDM

	Start Menu Options
	Data Type Support and Scaling for Device Driver Blocks

	Generating Stand-Alone Real-Time Applications
	Overview
	Generating Real-Time Applications
	Deploying Generated Code

	Tutorial: Creating a New Application
	Tutorial Overview
	Before You Begin
	Configuring Target Preferences and Boot Code

	The Example Model
	Generating Code
	Downloading the Application to RAM via Serial or CAN
	Downloading the Application to RAM via BDM

	Downloading Boot and Application Code
	RAM vs. Flash Memory
	Overview of Memory Organization and the Boot Process
	Purpose of Flash Memory Boot Code
	Memory Organization
	The Boot Process

	Downloading Application Code
	Downloading the Application Code to RAM
	Downloading the Application Code to Flash Memory
	Downloading Application Code to Flash Memory via Serial or CAN

	Stand-Alone Download Control Panel Utility
	Downloading Boot or Application Code via CAN Without Manual CPU
	Rebuilding the Boot Code and Device Driver Libraries
	Boot Code Parameters for CAN Download

	Running Applications with a Debugger

	Parameter Tuning and Signal Logging
	Methods for Parameter Tuning and Signal Logging
	Using External Mode
	Configuring the Host Vector CAN Application Channel
	Using Supported Objects and Data Types
	Tuning Parameters
	Viewing and Storing Signal Data
	Manual Configuration For External Mode
	Limitations

	Using a Third Party Calibration Tool
	How the Process Works
	ASAP2 File Generation Procedure

	Data Acquisition (DAQ) List Configuration

	HTML Code Profile (RAM/ROM) Report
	Execution Profiling
	Overview of Execution Profiling
	The Profiling Command
	Execution Profiling Definitions
	The Execution Profiling Block

	MPC5xx Options for Execution Profiling
	Overrun Options

	Interpreting the Execution Profiling Graphic
	Enabling Execution Profiling for Device Driver Interrupt Service

	Summary of the Real-Time Target
	Code Generation Options
	Target-Specific Options

	Requirements and Restrictions
	MPC555 Resource Configuration Block Required
	Model Reference and Driver Blocks
	Restricted Code Generation Options

	Performance Tips
	Run the Model Advisor
	Increase the System Clock Beyond the Default 20 MHz
	Use Flash Instead of RAM
	TouCAN Interrupt Generator Block Performance Tips
	Optimized Target Function Library

	PIL Cosimulation
	Overview of PIL Cosimulation
	What Is PIL Cosimulation?
	Why Use Cosimulation?
	How Cosimulation Works

	Tutorial 1: Building and Running a PIL Cosimulation
	Before You Begin
	Hardware Connections
	The Demo Model
	Setting Up the Model
	Building PIL and Simulation Components
	Using the Demo Model In a PIL Cosimulation
	Modifying the Controller Subsystem

	Tutorial 2: Using the Demo Model in Simulation
	Closed-Loop Simulation
	SIL Simulation

	PIL Target Summary
	Code Generation Options
	Target-Specific Options
	Manual Download

	Build Process Files and Directories
	Restrictions

	Algorithm Export Target
	HTML Code Analysis (RAM/ROM) Report
	Algorithm Export Target Summary
	Code Generation Options
	Restrictions

	Block Reference
	MPC555 Drivers
	Top-Level Blocks
	CAN 2.0B Controller Module (TouCAN)
	Enhanced Queued Analog-to-Digital Converter Module-64
	Execution Profiling
	Interrupts
	Modular Input/Output System (MIOS1)
	Queued Analog-to-Digital Converter Module-64
	Time Processor Unit (TPU3)
	Serial Communications Interface (SCI)
	Utilities

	CAN Message Blocks and CAN Drivers

	Blocks — Alphabetical List
	Configuration Parameters
	Real-Time Workshop Pane: ET MPC5xx (Algorithm Export) Options
	ET MPC5xx (Algorithm Export) Options Tab Overview
	Configuration
	Tips
	See Also

	Use prebuilt (static) RTW Libraries
	Settings
	Command-Line Information
	See Also

	Real-Time Workshop Pane: ET MPC5xx (Processor-in-the-Loop) Optio
	ET MPC5xx (Processor-in-the-Loop) Options Tab Overview
	Configuration
	See Also

	Optimize compiler for
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Compiler optimization switches
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Build action
	Settings
	Command-Line Information
	See Also

	Use prebuilt (static) RTW Libraries
	Settings
	Command-Line Information
	See Also

	Real-Time Workshop Pane: ET MPC5xx Real-Time Options (1)
	ET MPC5xx Real-Time Options (1) Tab Overview
	Configuration
	See Also

	Optimize compiler for
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Compiler optimization switches
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Target Memory Model
	Settings
	Tips
	Command-Line Information
	See Also

	Build action
	Settings
	Command-Line Information
	See Also

	Use prebuilt RTW libraries
	Settings
	Command-Line Information
	See Also

	Real-Time Workshop Pane: ET MPC5xx Real-Time Options (2)
	ET MPC5xx Real-Time Options (2) Tab Overview
	Configuration
	See Also

	Maximum number of concurrent base-rate overruns
	Settings
	Tips
	Command-Line Information
	See Also

	Maximum number of concurrent sub-rate overruns
	Settings
	Tips
	Command-Line Information
	See Also

	Execution profiling
	Settings
	Tip
	Dependency
	See Also

	Number of data points
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Toolchains and Hardware
	Setting Up Your Toolchain
	Setting Up Your Installation with Wind River Compiler and Wind R
	Required Hardware and Software
	Procedure
	Install Wind River Compiler
	Install Wind River Systems SingleStep Debugger
	Setting Target Preferences for Wind River Compiler and Wind Rive
	Initialize visionPROBE
	Configure MPC5xx Jumpers

	Setting Up Your Installation with Freescale CodeWarrior
	Required Hardware and Software
	Procedure
	Install Freescale CodeWarrior IDE
	Configure Freescale CodeWarrior Debugger
	Set Target Preferences for CodeWarrior
	Configure MPC5xx Jumpers

	Setting Up Your Target Hardware
	Communications Ports
	Jumper Settings
	Phytec MPC555 Jumper Settings
	Phytec MPC565 Jumper Settings
	Axiom MPC555 Jumper Settings
	Axiom MPC564EVB Jumper Settings
	Axiom MPC566EVB Jumper Settings

	CAN Hardware and Drivers
	Configuring CAN Channels
	Creating and Assigning Application Channels

	Configuration for Nondefault Hardware
	Hardware Clock Configuration
	Configuring for a Crystal Frequency Other Than 20 MHz

	Other Configuration Changes for Nondefault Hardware

	Integrating External Blocksets
	Introduction
	Example External Blockset Directory Structure and rtwmakecfg.m

	Examples
	Real-Time Target
	Processor-in-the-Loop Target
	Algorithm Export Target

	Index

	tables
	I/O Data Types and Scaling for MPC5xx Device Driver Blocks
	Default Boot Code Parameters
	Real-Time Target Restricted Code Generation Options
	PIL Target Restricted Code Generation Options
	AE Target Restricted Code Generation Options
	Nonmultiplexed Scan Mode
	Multiplexed Scan Mode
	Relationship of Port/Bit Parameters to Hardware Pins
	Multiplexed Scan Mode
	FCS State Values
	Transmit Modes

